- -

Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue

Mostrar el registro completo del ítem

Baeza-Brotons, F.; Paya Bernabeu, JJ.; Galao, O.; Alberti, MG.; Garcés, P. (2020). Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue. Materials. 13(20):1-19. https://doi.org/10.3390/ma13204634

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170576

Ficheros en el ítem

Metadatos del ítem

Título: Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue
Autor: Baeza-Brotons, Francisco Paya Bernabeu, Jorge Juan Galao, Oscar Alberti, Marcos G. Garcés, Pedro
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] This paper proposes binary and ternary combinations of sewage sludge ash (SSA) with fly ash (FA), marble dust (MD) and rice husk ash (RHA) as partial replacements of Portland cement in concretes with a similar dosage ...[+]
Palabras clave: Waste valorisation , Concrete block , Marble dust , Fly ash , Rice husk ash , Mineral additions
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma13204634
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma13204634
Tipo: Artículo

References

Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002

Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244-1256. doi:10.1016/j.cemconres.2010.12.001

Ministerio de Agricultura Alimentación y Medio Ambiente http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-dep [+]
Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002

Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244-1256. doi:10.1016/j.cemconres.2010.12.001

Ministerio de Agricultura Alimentación y Medio Ambiente http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-dep

Cyr, M., Coutand, M., & Clastres, P. (2007). Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cement and Concrete Research, 37(8), 1278-1289. doi:10.1016/j.cemconres.2007.04.003

Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328-2340. doi:10.1016/j.wasman.2013.05.024

Marble Association of Alicante http://www.marmoldealicante.es

Chen, M., Blanc, D., Gautier, M., Mehu, J., & Gourdon, R. (2013). Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33(5), 1268-1275. doi:10.1016/j.wasman.2013.01.004

Monzó, J., Payá, J., Borrachero, M. V., & Córcoles, A. (1996). Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cement and Concrete Research, 26(9), 1389-1398. doi:10.1016/0008-8846(96)00119-6

Payá, J., Monzó, J., Borrachero, M. V., Amahjour, F., Girbés, I., Velázquez, S., & Ordóñez, L. M. (2002). Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. Journal of Chemical Technology & Biotechnology, 77(3), 331-335. doi:10.1002/jctb.583

Tay, J.-H., & Show, K.-Y. (1994). Municipal wastewater sludge as cementitious and blended cement materials. Cement and Concrete Composites, 16(1), 39-48. doi:10.1016/0958-9465(94)90029-9

Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010). Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites, 32(2), 121-127. doi:10.1016/j.cemconcomp.2009.10.008

Research Group in Chemistry Building Materials—Universitat Politècnica de València. Proyecto PEL-CEN http://epsar.cop.gva.es/depuradorasv

Peris Mora, E., Payá, J., & Monzó, J. (1993). Influence of different sized fractions of a fly ash on workability of mortars. Cement and Concrete Research, 23(4), 917-924. doi:10.1016/0008-8846(93)90045-b

Evolución de las resistencias mecánicas de sistemas ternarios cemento/ceniza volante/ceniza de lodo de depuradora: Efectos puzolánicos complementarios https://www.upv.es/pms2002/Comunicaciones/038 PAYA.PDF

Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113-117. doi:10.1016/j.conbuildmat.2009.08.013

Influence of Marble and Limestone Dusts as Additives on Some Mechanical Properties of Concrete, SCI RES ESSAYS 2 (2007) 372-379 http://www.academicjournals.org/SRE

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41. doi:10.1016/j.conbuildmat.2013.09.005

Rodríguez de Sensale, G. (2006). Strength development of concrete with rice-husk ash. Cement and Concrete Composites, 28(2), 158-160. doi:10.1016/j.cemconcomp.2005.09.005

Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A. N., & Mirza, J. (2012). Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials, 30, 360-365. doi:10.1016/j.conbuildmat.2011.11.028

Madandoust, R., Ranjbar, M. M., Moghadam, H. A., & Mousavi, S. Y. (2011). Mechanical properties and durability assessment of rice husk ash concrete. Biosystems Engineering, 110(2), 144-152. doi:10.1016/j.biosystemseng.2011.07.009

Nicoara, A. I., Stoica, A. E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., … Vasile, B. S. (2020). End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials, 13(8), 1954. doi:10.3390/ma13081954

García Arenas, C., Marrero, M., Leiva, C., Solís-Guzmán, J., & Vilches Arenas, L. F. (2011). High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Management, 31(8), 1783-1789. doi:10.1016/j.wasman.2011.03.017

Poon, C.-S., Kou, S., Wan, H., & Etxeberria, M. (2009). Properties of concrete blocks prepared with low grade recycled aggregates. Waste Management, 29(8), 2369-2377. doi:10.1016/j.wasman.2009.02.018

Sabai, M. M., Cox, M. G. D. M., Mato, R. R., Egmond, E. L. C., & Lichtenberg, J. J. N. (2013). Concrete block production from construction and demolition waste in Tanzania. Resources, Conservation and Recycling, 72, 9-19. doi:10.1016/j.resconrec.2012.12.003

Xiao, R., Ma, Y., Jiang, X., Zhang, M., Zhang, Y., Wang, Y., … He, Q. (2020). Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. Journal of Cleaner Production, 252, 119610. doi:10.1016/j.jclepro.2019.119610

Xiao, R., Polaczyk, P., Zhang, M., Jiang, X., Zhang, Y., Huang, B., & Hu, W. (2020). Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate. Transportation Research Record: Journal of the Transportation Research Board, 2674(1), 22-32. doi:10.1177/0361198119898695

Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579-1589. doi:10.1016/j.cemconres.2012.09.006

Scrivener, K., Martirena, F., Bishnoi, S., & Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114, 49-56. doi:10.1016/j.cemconres.2017.08.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem