- -

Tracking homogeneous reactions during electrodialysis of organic acids via EIS

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tracking homogeneous reactions during electrodialysis of organic acids via EIS

Mostrar el registro completo del ítem

Martí Calatayud, MC.; Evdochenko, E.; Bär, J.; García Gabaldón, M.; Wessling, M.; Pérez-Herranz, V. (2020). Tracking homogeneous reactions during electrodialysis of organic acids via EIS. Journal of Membrane Science. 595:1-10. https://doi.org/10.1016/j.memsci.2019.117592

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170578

Ficheros en el ítem

Metadatos del ítem

Título: Tracking homogeneous reactions during electrodialysis of organic acids via EIS
Autor: Martí Calatayud, Manuel César Evdochenko, E. Bär, J. García Gabaldón, Montserrat Wessling, M. Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Organic acids are highly valuable platform chemicals that can be obtained from bioresources and subsequently transformed into a wide spectrum of profitable consumer goods. After their synthesis, organic acids need to ...[+]
Palabras clave: Electrodialysis , Weak electrolytes , Electrochemical impedance spectroscopy (EIS) , Platform chemicals , Organic acid recovery , Biorefinery
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Membrane Science. (issn: 0376-7388 )
DOI: 10.1016/j.memsci.2019.117592
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.memsci.2019.117592
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/
Agradecimientos:
M.C. Marti-Calatayud acknowledges the support of Generalitat Valenciana through the funding APOSTD/2017/059.
Tipo: Artículo

References

Kiss, A. A., Lange, J.-P., Schuur, B., Brilman, D. W. F., van der Ham, A. G. J., & Kersten, S. R. A. (2016). Separation technology–Making a difference in biorefineries. Biomass and Bioenergy, 95, 296-309. doi:10.1016/j.biombioe.2016.05.021

Abels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444, 285-317. doi:10.1016/j.memsci.2013.05.030

Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., & Barta, K. (2018). Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 118(2), 614-678. doi:10.1021/acs.chemrev.7b00588 [+]
Kiss, A. A., Lange, J.-P., Schuur, B., Brilman, D. W. F., van der Ham, A. G. J., & Kersten, S. R. A. (2016). Separation technology–Making a difference in biorefineries. Biomass and Bioenergy, 95, 296-309. doi:10.1016/j.biombioe.2016.05.021

Abels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444, 285-317. doi:10.1016/j.memsci.2013.05.030

Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., & Barta, K. (2018). Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 118(2), 614-678. doi:10.1021/acs.chemrev.7b00588

Wang, M., Ma, J., Liu, H., Luo, N., Zhao, Z., & Wang, F. (2018). Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 8(3), 2129-2165. doi:10.1021/acscatal.7b03790

Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I. K., … Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43(8), 2587. doi:10.1039/c3cs60293a

Betiku, E., Emeko, H. A., & Solomon, B. O. (2016). Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon, 2(2), e00082. doi:10.1016/j.heliyon.2016.e00082

Regestein, L., Klement, T., Grande, P., Kreyenschulte, D., Heyman, B., Maßmann, T., … Büchs, J. (2018). From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1273-y

Di Marino, D., Jestel, T., Marks, C., Viell, J., Blindert, M., Kriescher, S. M. A., … Wessling, M. (2019). Carboxylic Acids Production via Electrochemical Depolymerization of Lignin. ChemElectroChem, 6(5), 1434-1442. doi:10.1002/celc.201801676

López-Garzón, C. S., & Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 32(5), 873-904. doi:10.1016/j.biotechadv.2014.04.002

Handojo, L., Wardani, A. K., Regina, D., Bella, C., Kresnowati, M. T. A. P., & Wenten, I. G. (2019). Electro-membrane processes for organic acid recovery. RSC Advances, 9(14), 7854-7869. doi:10.1039/c8ra09227c

Stodollick, J., Femmer, R., Gloede, M., Melin, T., & Wessling, M. (2014). Electrodialysis of itaconic acid: A short-cut model quantifying the electrical resistance in the overlimiting current density region. Journal of Membrane Science, 453, 275-281. doi:10.1016/j.memsci.2013.11.008

Brauns, E. (2008). Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? Desalination, 219(1-3), 312-323. doi:10.1016/j.desal.2007.04.056

Abu Khalla, S., & Suss, M. E. (2019). Desalination via chemical energy: An electrodialysis cell driven by spontaneous electrode reactions. Desalination, 467, 257-262. doi:10.1016/j.desal.2019.04.031

Chandra, A., Tadimeti, J. G. D., & Chattopadhyay, S. (2018). Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes. Chinese Journal of Chemical Engineering, 26(2), 278-292. doi:10.1016/j.cjche.2017.05.010

Andersen, S. J., Hennebel, T., Gildemyn, S., Coma, M., Desloover, J., Berton, J., … Rabaey, K. (2014). Electrolytic Membrane Extraction Enables Production of Fine Chemicals from Biorefinery Sidestreams. Environmental Science & Technology, 48(12), 7135-7142. doi:10.1021/es500483w

Chai, P., Wang, J., & Lu, H. (2015). The cleaner production of monosodium l -glutamate by resin-filled electro-membrane reactor. Journal of Membrane Science, 493, 549-556. doi:10.1016/j.memsci.2015.07.023

Fu, L., Gao, X., Yang, Y., Aiyong, F., Hao, H., & Gao, C. (2014). Preparation of succinic acid using bipolar membrane electrodialysis. Separation and Purification Technology, 127, 212-218. doi:10.1016/j.seppur.2014.02.028

Kumar, M., Tripathi, B. P., & Shahi, V. K. (2009). Electro-membrane reactor for separation and in situ ion substitution of glutamic acid from its sodium salt. Electrochimica Acta, 54(21), 4880-4887. doi:10.1016/j.electacta.2009.04.036

Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7

Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031

Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033

Belashova, E. D., Pismenskaya, N. D., Nikonenko, V. V., Sistat, P., & Pourcelly, G. (2017). Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. Journal of Membrane Science, 542, 177-185. doi:10.1016/j.memsci.2017.08.002

Martí-Calatayud, M., García-Gabaldón, M., & Pérez-Herranz, V. (2018). Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents. Applied Sciences, 8(9), 1566. doi:10.3390/app8091566

Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186

Femmer, R., Mani, A., & Wessling, M. (2015). Ion transport through electrolyte/polyelectrolyte multi-layers. Scientific Reports, 5(1). doi:10.1038/srep11583

Belloň, T., Polezhaev, P., Vobecká, L., Svoboda, M., & Slouka, Z. (2019). Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. Journal of Membrane Science, 572, 607-618. doi:10.1016/j.memsci.2018.11.037

Rybalkina, O. A., Tsygurina, K. A., Melnikova, E. D., Pourcelly, G., Nikonenko, V. V., & Pismenskaya, N. D. (2019). Catalytic effect of ammonia-containing species on water splitting during electrodialysis with ion-exchange membranes. Electrochimica Acta, 299, 946-962. doi:10.1016/j.electacta.2019.01.068

Tanaka, Y. (2010). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350(1-2), 347-360. doi:10.1016/j.memsci.2010.01.010

Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D., Nikonenko, V. V., Larchet, C., & Pourcelly, G. (2006). Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. The Journal of Physical Chemistry B, 110(27), 13458-13469. doi:10.1021/jp062433f

Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.142

Zabolotskiy, V. I., But, A. Y., Vasil’eva, V. I., Akberova, E. M., & Melnikov, S. S. (2017). Ion transport and electrochemical stability of strongly basic anion-exchange membranes under high current electrodialysis conditions. Journal of Membrane Science, 526, 60-72. doi:10.1016/j.memsci.2016.12.028

Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25(3), 244-263. doi:10.1016/j.biotechadv.2007.01.002

Komáromy, P., Bakonyi, P., Kucska, A., Tóth, G., Gubicza, L., Bélafi-Bakó, K., & Nemestóthy, N. (2019). Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. Fermentation, 5(2), 31. doi:10.3390/fermentation5020031

Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393, 137-149. doi:10.1016/j.memsci.2011.12.012

Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058

Butylskii, D. Y., Mareev, S. A., Pismenskaya, N. D., Apel, P. Y., Polezhaeva, O. A., & Nikonenko, V. V. (2018). Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes. Electrochimica Acta, 273, 289-299. doi:10.1016/j.electacta.2018.04.026

Moya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087

Femmer, R., Martí-Calatayud, M. C., & Wessling, M. (2016). Mechanistic modeling of the dielectric impedance of layered membrane architectures. Journal of Membrane Science, 520, 29-36. doi:10.1016/j.memsci.2016.07.055

Roghmans, F., Martí-Calatayud, M. C., Abdu, S., Femmer, R., Tiwari, R., Walther, A., & Wessling, M. (2016). Electrochemical impedance spectroscopy fingerprints the ion selectivity of microgel functionalized ion-exchange membranes. Electrochemistry Communications, 72, 113-117. doi:10.1016/j.elecom.2016.09.009

Kniaginicheva, E., Pismenskaya, N., Melnikov, S., Belashova, E., Sistat, P., Cretin, M., & Nikonenko, V. (2015). Water splitting at an anion-exchange membrane as studied by impedance spectroscopy. Journal of Membrane Science, 496, 78-83. doi:10.1016/j.memsci.2015.07.050

Pismenskaya, N. D., Pokhidnia, E. V., Pourcelly, G., & Nikonenko, V. V. (2018). Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? Journal of Membrane Science, 566, 54-68. doi:10.1016/j.memsci.2018.08.055

Harding, M. S., Tribollet, B., Vivier, V., & Orazem, M. E. (2017). The Influence of Homogeneous Reactions on the Impedance Response of a Rotating Disk Electrode. Journal of The Electrochemical Society, 164(11), E3418-E3428. doi:10.1149/2.0411711jes

Nikonenko, V., Lebedev, K., Manzanares, J. A., & Pourcelly, G. (2003). Modelling the transport of carbonic acid anions through anion-exchange membranes. Electrochimica Acta, 48(24), 3639-3650. doi:10.1016/s0013-4686(03)00485-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem