Mostrar el registro sencillo del ítem
dc.contributor.author | Martí Calatayud, Manuel César | es_ES |
dc.contributor.author | Evdochenko, E. | es_ES |
dc.contributor.author | Bär, J. | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Wessling, M. | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.date.accessioned | 2021-07-28T03:30:57Z | |
dc.date.available | 2021-07-28T03:30:57Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.issn | 0376-7388 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170578 | |
dc.description.abstract | [EN] Organic acids are highly valuable platform chemicals that can be obtained from bioresources and subsequently transformed into a wide spectrum of profitable consumer goods. After their synthesis, organic acids need to be separated from other by-products and conveniently upconcentrated. Based on the ionic nature of organic acids, electromembrane processes are viable technologies for their recovery. Transport of weak acids through ion- exchange membranes is a complex process influenced by multiple phenomena, i.e. concentration polarization, water dissociation and counterion-membrane interactions. In the present study, the transport of two different organic acids (citric and oxalic acid) through anion-exchange membranes is investigated by means of using linear sweep voltammetry, chronopotentiometry and electrochemical impedance spectroscopy (EIS). Results have shown that, at pH values where multivalent acid anions predominate in solution, a first limiting current density is registered in the current-voltage curves, followed by an increase in membrane resistance. A further increase in current leads to a second limiting current density and a steeper increase in membrane resistance associated with an intensified ion depletion. A strong correlation between polarization curves and electrochemical impedance measurements reveals that such increase in resistance is prompted by generation of Hþ and OH? ions and the concomitant onset of homogeneous reactions in very thin solution layers. The generation of Hþ and OH? ions is tracked by a Gerischer arc in the impedance spectra. As the polarization level increases, the subsequent reaction of multivalent anions into lower-charge acid anions involves the evolution of additional Gerischer arcs. Furthermore, the lower conductivity of the reaction products correlates with the increased system resistance. The characteristic times of these reactions are in the order of milliseconds, thus being only directly accessible with the use of frequency response analysis techniques, such as EIS. | es_ES |
dc.description.sponsorship | M.C. Marti-Calatayud acknowledges the support of Generalitat Valenciana through the funding APOSTD/2017/059. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Membrane Science | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Electrodialysis | es_ES |
dc.subject | Weak electrolytes | es_ES |
dc.subject | Electrochemical impedance spectroscopy (EIS) | es_ES |
dc.subject | Platform chemicals | es_ES |
dc.subject | Organic acid recovery | es_ES |
dc.subject | Biorefinery | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Tracking homogeneous reactions during electrodialysis of organic acids via EIS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.memsci.2019.117592 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Martí Calatayud, MC.; Evdochenko, E.; Bär, J.; García Gabaldón, M.; Wessling, M.; Pérez-Herranz, V. (2020). Tracking homogeneous reactions during electrodialysis of organic acids via EIS. Journal of Membrane Science. 595:1-10. https://doi.org/10.1016/j.memsci.2019.117592 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.memsci.2019.117592 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 595 | es_ES |
dc.relation.pasarela | S\410165 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | Kiss, A. A., Lange, J.-P., Schuur, B., Brilman, D. W. F., van der Ham, A. G. J., & Kersten, S. R. A. (2016). Separation technology–Making a difference in biorefineries. Biomass and Bioenergy, 95, 296-309. doi:10.1016/j.biombioe.2016.05.021 | es_ES |
dc.description.references | Abels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 444, 285-317. doi:10.1016/j.memsci.2013.05.030 | es_ES |
dc.description.references | Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., & Barta, K. (2018). Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 118(2), 614-678. doi:10.1021/acs.chemrev.7b00588 | es_ES |
dc.description.references | Wang, M., Ma, J., Liu, H., Luo, N., Zhao, Z., & Wang, F. (2018). Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 8(3), 2129-2165. doi:10.1021/acscatal.7b03790 | es_ES |
dc.description.references | Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I. K., … Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43(8), 2587. doi:10.1039/c3cs60293a | es_ES |
dc.description.references | Betiku, E., Emeko, H. A., & Solomon, B. O. (2016). Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon, 2(2), e00082. doi:10.1016/j.heliyon.2016.e00082 | es_ES |
dc.description.references | Regestein, L., Klement, T., Grande, P., Kreyenschulte, D., Heyman, B., Maßmann, T., … Büchs, J. (2018). From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1273-y | es_ES |
dc.description.references | Di Marino, D., Jestel, T., Marks, C., Viell, J., Blindert, M., Kriescher, S. M. A., … Wessling, M. (2019). Carboxylic Acids Production via Electrochemical Depolymerization of Lignin. ChemElectroChem, 6(5), 1434-1442. doi:10.1002/celc.201801676 | es_ES |
dc.description.references | López-Garzón, C. S., & Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 32(5), 873-904. doi:10.1016/j.biotechadv.2014.04.002 | es_ES |
dc.description.references | Handojo, L., Wardani, A. K., Regina, D., Bella, C., Kresnowati, M. T. A. P., & Wenten, I. G. (2019). Electro-membrane processes for organic acid recovery. RSC Advances, 9(14), 7854-7869. doi:10.1039/c8ra09227c | es_ES |
dc.description.references | Stodollick, J., Femmer, R., Gloede, M., Melin, T., & Wessling, M. (2014). Electrodialysis of itaconic acid: A short-cut model quantifying the electrical resistance in the overlimiting current density region. Journal of Membrane Science, 453, 275-281. doi:10.1016/j.memsci.2013.11.008 | es_ES |
dc.description.references | Brauns, E. (2008). Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? Desalination, 219(1-3), 312-323. doi:10.1016/j.desal.2007.04.056 | es_ES |
dc.description.references | Abu Khalla, S., & Suss, M. E. (2019). Desalination via chemical energy: An electrodialysis cell driven by spontaneous electrode reactions. Desalination, 467, 257-262. doi:10.1016/j.desal.2019.04.031 | es_ES |
dc.description.references | Chandra, A., Tadimeti, J. G. D., & Chattopadhyay, S. (2018). Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes. Chinese Journal of Chemical Engineering, 26(2), 278-292. doi:10.1016/j.cjche.2017.05.010 | es_ES |
dc.description.references | Andersen, S. J., Hennebel, T., Gildemyn, S., Coma, M., Desloover, J., Berton, J., … Rabaey, K. (2014). Electrolytic Membrane Extraction Enables Production of Fine Chemicals from Biorefinery Sidestreams. Environmental Science & Technology, 48(12), 7135-7142. doi:10.1021/es500483w | es_ES |
dc.description.references | Chai, P., Wang, J., & Lu, H. (2015). The cleaner production of monosodium l -glutamate by resin-filled electro-membrane reactor. Journal of Membrane Science, 493, 549-556. doi:10.1016/j.memsci.2015.07.023 | es_ES |
dc.description.references | Fu, L., Gao, X., Yang, Y., Aiyong, F., Hao, H., & Gao, C. (2014). Preparation of succinic acid using bipolar membrane electrodialysis. Separation and Purification Technology, 127, 212-218. doi:10.1016/j.seppur.2014.02.028 | es_ES |
dc.description.references | Kumar, M., Tripathi, B. P., & Shahi, V. K. (2009). Electro-membrane reactor for separation and in situ ion substitution of glutamic acid from its sodium salt. Electrochimica Acta, 54(21), 4880-4887. doi:10.1016/j.electacta.2009.04.036 | es_ES |
dc.description.references | Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7 | es_ES |
dc.description.references | Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 | es_ES |
dc.description.references | Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033 | es_ES |
dc.description.references | Belashova, E. D., Pismenskaya, N. D., Nikonenko, V. V., Sistat, P., & Pourcelly, G. (2017). Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. Journal of Membrane Science, 542, 177-185. doi:10.1016/j.memsci.2017.08.002 | es_ES |
dc.description.references | Martí-Calatayud, M., García-Gabaldón, M., & Pérez-Herranz, V. (2018). Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents. Applied Sciences, 8(9), 1566. doi:10.3390/app8091566 | es_ES |
dc.description.references | Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186 | es_ES |
dc.description.references | Femmer, R., Mani, A., & Wessling, M. (2015). Ion transport through electrolyte/polyelectrolyte multi-layers. Scientific Reports, 5(1). doi:10.1038/srep11583 | es_ES |
dc.description.references | Belloň, T., Polezhaev, P., Vobecká, L., Svoboda, M., & Slouka, Z. (2019). Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. Journal of Membrane Science, 572, 607-618. doi:10.1016/j.memsci.2018.11.037 | es_ES |
dc.description.references | Rybalkina, O. A., Tsygurina, K. A., Melnikova, E. D., Pourcelly, G., Nikonenko, V. V., & Pismenskaya, N. D. (2019). Catalytic effect of ammonia-containing species on water splitting during electrodialysis with ion-exchange membranes. Electrochimica Acta, 299, 946-962. doi:10.1016/j.electacta.2019.01.068 | es_ES |
dc.description.references | Tanaka, Y. (2010). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350(1-2), 347-360. doi:10.1016/j.memsci.2010.01.010 | es_ES |
dc.description.references | Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D., Nikonenko, V. V., Larchet, C., & Pourcelly, G. (2006). Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. The Journal of Physical Chemistry B, 110(27), 13458-13469. doi:10.1021/jp062433f | es_ES |
dc.description.references | Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.142 | es_ES |
dc.description.references | Zabolotskiy, V. I., But, A. Y., Vasil’eva, V. I., Akberova, E. M., & Melnikov, S. S. (2017). Ion transport and electrochemical stability of strongly basic anion-exchange membranes under high current electrodialysis conditions. Journal of Membrane Science, 526, 60-72. doi:10.1016/j.memsci.2016.12.028 | es_ES |
dc.description.references | Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25(3), 244-263. doi:10.1016/j.biotechadv.2007.01.002 | es_ES |
dc.description.references | Komáromy, P., Bakonyi, P., Kucska, A., Tóth, G., Gubicza, L., Bélafi-Bakó, K., & Nemestóthy, N. (2019). Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. Fermentation, 5(2), 31. doi:10.3390/fermentation5020031 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393, 137-149. doi:10.1016/j.memsci.2011.12.012 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 | es_ES |
dc.description.references | Butylskii, D. Y., Mareev, S. A., Pismenskaya, N. D., Apel, P. Y., Polezhaeva, O. A., & Nikonenko, V. V. (2018). Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes. Electrochimica Acta, 273, 289-299. doi:10.1016/j.electacta.2018.04.026 | es_ES |
dc.description.references | Moya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087 | es_ES |
dc.description.references | Femmer, R., Martí-Calatayud, M. C., & Wessling, M. (2016). Mechanistic modeling of the dielectric impedance of layered membrane architectures. Journal of Membrane Science, 520, 29-36. doi:10.1016/j.memsci.2016.07.055 | es_ES |
dc.description.references | Roghmans, F., Martí-Calatayud, M. C., Abdu, S., Femmer, R., Tiwari, R., Walther, A., & Wessling, M. (2016). Electrochemical impedance spectroscopy fingerprints the ion selectivity of microgel functionalized ion-exchange membranes. Electrochemistry Communications, 72, 113-117. doi:10.1016/j.elecom.2016.09.009 | es_ES |
dc.description.references | Kniaginicheva, E., Pismenskaya, N., Melnikov, S., Belashova, E., Sistat, P., Cretin, M., & Nikonenko, V. (2015). Water splitting at an anion-exchange membrane as studied by impedance spectroscopy. Journal of Membrane Science, 496, 78-83. doi:10.1016/j.memsci.2015.07.050 | es_ES |
dc.description.references | Pismenskaya, N. D., Pokhidnia, E. V., Pourcelly, G., & Nikonenko, V. V. (2018). Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? Journal of Membrane Science, 566, 54-68. doi:10.1016/j.memsci.2018.08.055 | es_ES |
dc.description.references | Harding, M. S., Tribollet, B., Vivier, V., & Orazem, M. E. (2017). The Influence of Homogeneous Reactions on the Impedance Response of a Rotating Disk Electrode. Journal of The Electrochemical Society, 164(11), E3418-E3428. doi:10.1149/2.0411711jes | es_ES |
dc.description.references | Nikonenko, V., Lebedev, K., Manzanares, J. A., & Pourcelly, G. (2003). Modelling the transport of carbonic acid anions through anion-exchange membranes. Electrochimica Acta, 48(24), 3639-3650. doi:10.1016/s0013-4686(03)00485-7 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |