Isaia, G. C., & Gastaldini, A. L. G. (2009). Concrete sustainability with very high amount of fly ash and slag. Revista IBRACON de Estruturas e Materiais, 2(3), 244-253. doi:10.1590/s1983-41952009000300003
Golewski, G. L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218-226. doi:10.1016/j.jclepro.2017.10.065
Hanehara, S., Tomosawa, F., Kobayakawa, M., & Hwang, K. (2001). Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement and Concrete Research, 31(1), 31-39. doi:10.1016/s0008-8846(00)00441-5
[+]
Isaia, G. C., & Gastaldini, A. L. G. (2009). Concrete sustainability with very high amount of fly ash and slag. Revista IBRACON de Estruturas e Materiais, 2(3), 244-253. doi:10.1590/s1983-41952009000300003
Golewski, G. L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218-226. doi:10.1016/j.jclepro.2017.10.065
Hanehara, S., Tomosawa, F., Kobayakawa, M., & Hwang, K. (2001). Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement and Concrete Research, 31(1), 31-39. doi:10.1016/s0008-8846(00)00441-5
Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009
Isaia, G. ., Gastaldini, A. L. ., & Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites, 25(1), 69-76. doi:10.1016/s0958-9465(01)00057-9
Simčič, T., Pejovnik, S., De Schutter, G., & Bosiljkov, V. B. (2015). Chloride ion penetration into fly ash modified concrete during wetting–drying cycles. Construction and Building Materials, 93, 1216-1223. doi:10.1016/j.conbuildmat.2015.04.033
Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1-7. doi:10.1016/j.cemconres.2011.01.001
Delagrave, A., Marchand, J., Ollivier, J.-P., Julien, S., & Hazrati, K. (1997). Chloride binding capacity of various hydrated cement paste systems. Advanced Cement Based Materials, 6(1), 28-35. doi:10.1016/s1065-7355(97)90003-1
Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024
Lollini, F., Redaelli, E., & Bertolini, L. (2015). Investigation on the effect of supplementary cementitious materials on the critical chloride threshold of steel in concrete. Materials and Structures, 49(10), 4147-4165. doi:10.1617/s11527-015-0778-0
Baroghel-Bouny, V., Kinomura, K., Thiery, M., & Moscardelli, S. (2011). Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cement and Concrete Composites, 33(8), 832-847. doi:10.1016/j.cemconcomp.2011.04.007
Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials & Design (1980-2015), 36, 655-662. doi:10.1016/j.matdes.2011.11.043
Poon, C. S., Lam, L., & Wong, Y. L. (2000). A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447-455. doi:10.1016/s0008-8846(99)00271-9
Garcés, P., Andión, L. G., Zornoza, E., Bonilla, M., & Payá, J. (2010). The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 32(3), 204-210. doi:10.1016/j.cemconcomp.2009.11.006
Ghafoori, N., Najimi, M., Diawara, H., & Islam, M. S. (2015). Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under continuous and interrupted sulfate exposures. Construction and Building Materials, 78, 85-91. doi:10.1016/j.conbuildmat.2015.01.004
Han, C., Shen, W., Ji, X., Wang, Z., Ding, Q., Xu, G., … Tang, X. (2018). Behavior of high performance concrete pastes with different mineral admixtures in simulated seawater environment. Construction and Building Materials, 187, 426-438. doi:10.1016/j.conbuildmat.2018.07.196
Zuquan, J., Xia, Z., Tiejun, Z., & Jianqing, L. (2018). Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Construction and Building Materials, 177, 170-183. doi:10.1016/j.conbuildmat.2018.05.120
Cheewaket, T., Jaturapitakkul, C., & Chalee, W. (2010). Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Construction and Building Materials, 24(8), 1352-1357. doi:10.1016/j.conbuildmat.2009.12.039
Fanghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172-179. doi:10.1016/j.conbuildmat.2015.05.117
Alaka, H. A., & Oyedele, L. O. (2016). High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer. Journal of Building Engineering, 8, 81-90. doi:10.1016/j.jobe.2016.09.008
Huang, Q., Zhu, X., Liu, D., Zhao, L., & Zhao, M. (2021). Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica. Journal of Building Engineering, 33, 101638. doi:10.1016/j.jobe.2020.101638
Anjos, M. A. S., Camões, A., Campos, P., Azeredo, G. A., & Ferreira, R. L. S. (2020). Effect of high volume fly ash and metakaolin with and without hydrated lime on the properties of self-compacting concrete. Journal of Building Engineering, 27, 100985. doi:10.1016/j.jobe.2019.100985
Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. doi:10.1016/j.conbuildmat.2020.120606
Lorca, P., Calabuig, R., Benlloch, J., Soriano, L., & Payá, J. (2014). Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 64, 535-541. doi:10.1016/j.matdes.2014.08.022
Panesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. doi:10.1016/j.conbuildmat.2020.118866
Baert, G., Poppe, A.-M., & De Belie, N. (2008). Strength and durability of high-volume fly ash concrete. Structural Concrete, 9(2), 101-108. doi:10.1680/stco.2008.9.2.101
Lammertijn, S., & De Belie, N. (2008). Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete. Magazine of Concrete Research, 60(7), 535-545. doi:10.1680/macr.2008.60.7.535
Bouzoubaâ, N., Bilodeau, A., Tamtsia, B., & Foo, S. (2010). Carbonation of fly ash concrete: laboratory and field data. Canadian Journal of Civil Engineering, 37(12), 1535-1549. doi:10.1139/l10-081
Zhang, Y. M., Sun, W., & Yan, H. D. (2000). Hydration of high-volume fly ash cement pastes. Cement and Concrete Composites, 22(6), 445-452. doi:10.1016/s0958-9465(00)00044-5
Zhao, Q., He, X., Zhang, J., & Jiang, J. (2016). Long-age wet curing effect on performance of carbonation resistance of fly ash concrete. Construction and Building Materials, 127, 577-587. doi:10.1016/j.conbuildmat.2016.10.065
Barbhuiya, S. A., Gbagbo, J. K., Russell, M. I., & Basheer, P. A. M. (2009). Properties of fly ash concrete modified with hydrated lime and silica fume. Construction and Building Materials, 23(10), 3233-3239. doi:10.1016/j.conbuildmat.2009.06.001
Filho, J. H., Medeiros, M. H. F., Pereira, E., Helene, P., & Isaia, G. C. (2013). High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. Journal of Materials in Civil Engineering, 25(3), 411-418. doi:10.1061/(asce)mt.1943-5533.0000596
Kumar, M., Singh, S. K., & Singh, N. P. (2012). Heat evolution during the hydration of Portland cement in the presence of fly ash, calcium hydroxide and super plasticizer. Thermochimica Acta, 548, 27-32. doi:10.1016/j.tca.2012.08.028
Gunasekara, C., Sandanayake, M., Zhou, Z., Law, D. W., & Setunge, S. (2020). Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Construction and Building Materials, 253, 119205. doi:10.1016/j.conbuildmat.2020.119205
Mohammed, M. E., Al-Shathr, B. S., & al-Attar, T. S. (2020). Effect of incorporating hydrated lime on strength gain of high-volume fly ash lightweight concrete. IOP Conference Series: Materials Science and Engineering, 737, 012058. doi:10.1088/1757-899x/737/1/012058
Bentz, D. P. (2014). Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cement and Concrete Composites, 53, 214-223. doi:10.1016/j.cemconcomp.2014.06.018
Gandía-Romero, J. M., Ramón, J. E., Bataller, R., Palací, D. G., Valcuende, M., & Soto, J. (2016). Influence of the area and distance between electrodes on resistivity measurements of concrete. Materials and Structures, 50(1). doi:10.1617/s11527-016-0925-2
Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4-5), 459-471. doi:10.1016/s0958-9465(02)00086-0
Matos, P. R. de, Sakata, R. D., & Prudêncio, L. R. (2019). Eco-efficient low binder high-performance self-compacting concretes. Construction and Building Materials, 225, 941-955. doi:10.1016/j.conbuildmat.2019.07.254
Hornbostel, K., Larsen, C. K., & Geiker, M. R. (2013). Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites, 39, 60-72. doi:10.1016/j.cemconcomp.2013.03.019
Shi, C. (2004). Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cement and Concrete Research, 34(3), 537-545. doi:10.1016/j.cemconres.2003.09.007
Li, S., & Roy, D. M. (1986). Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes. Cement and Concrete Research, 16(5), 749-759. doi:10.1016/0008-8846(86)90049-9
Ngala, V., Page, C., Parrott, L., & Yu, S. (1995). Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes. Cement and Concrete Research, 25(4), 819-826. doi:10.1016/0008-8846(95)00072-k
Zhang, T., & Gjørv, O. E. (1996). Diffusion behavior of chloride ions in concrete. Cement and Concrete Research, 26(6), 907-917. doi:10.1016/0008-8846(96)00069-5
Amiri, O., Aı̈t-Mokhtar, A., Dumargue, P., & Touchard, G. (2001). Electrochemical modelling of chloride migration in cement based materials. Electrochimica Acta, 46(9), 1267-1275. doi:10.1016/s0013-4686(00)00717-9
Shehata, M. H., Thomas, M. D. A., & Bleszynski, R. F. (1999). The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cement and Concrete Research, 29(12), 1915-1920. doi:10.1016/s0008-8846(99)00190-8
Alonso, M. C., & Sanchez, M. (2009). Analysis of the variability of chloride threshold values in the literature. Materials and Corrosion, 60(8), 631-637. doi:10.1002/maco.200905296
[-]