Mostrar el registro sencillo del ítem
dc.contributor.author | Valcuende Payá, Manuel Octavio | es_ES |
dc.contributor.author | Calabuig Pastor, Rafael | es_ES |
dc.contributor.author | Martínez-Ibernón, Ana | es_ES |
dc.contributor.author | Soto Camino, Juan | es_ES |
dc.date.accessioned | 2021-07-28T03:30:59Z | |
dc.date.available | 2021-07-28T03:30:59Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170579 | |
dc.description.abstract | [EN] The main objective of this study was to analyze the influence that the addition of finely ground hydrated lime has on chloride-induced reinforcement corrosion in eco-efficient concrete made with 50% cement replacement by fly ash. Six tests were carried out: mercury intrusion porosimetry, chloride migration, accelerated chloride penetration, electrical resistivity, and corrosion rate. The results show that the addition of 10¿20% of lime to fly ash concrete did not affect its resistance to chloride penetration. However, the cementitious matrix density is increased by the pozzolanic reaction between the fly ash and added lime. As a result, the porosity and the electrical resistivity improved (of the order of 10% and 40%, respectively), giving rise to a lower corrosion rate (iCORR) of the rebars and, therefore, an increase in durability. In fact, after subjecting specimens to wetting¿drying cycles in a 0.5 M sodium chloride solution for 630 days, corrosion is considered negligible in fly ash concrete with 10% or 20% lime (iCORR less than 0.2 µA/cm2), while in fly ash concrete without lime, corrosion was low (iCORR of the order of 0.3 µA/cm2) and in the reference concrete made with Portland cement, only the corrosion was high (iCORR between 2 and 3 µA/cm2). | es_ES |
dc.description.sponsorship | This research was funded by MINISTERIO DE ECONOMIA Y COMPETITIVIDAD, grant number MAT2012-38429-C04-04. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Concrete | es_ES |
dc.subject | Hydrated lime | es_ES |
dc.subject | Fly ash | es_ES |
dc.subject | Chloride | es_ES |
dc.subject | Resistivity | es_ES |
dc.subject | Corrosion rate | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | Influence of hydrated lime on the chloride-induced reinforcement corrosion in eco-efficient concretes made with high-volume fly ash | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma13225135 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-04/ES/DESARROLLO DE NUEVOS SISTEMAS DE DETECCION Y ACCION BASADOS EN TECNOLOGIAS ELECTRONICAS Y MICROELECTRONICAS PARA SU APLICACION EN SISTEMAS DE LIBERACION Y DETECCION DE GASES/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.description.bibliographicCitation | Valcuende Payá, MO.; Calabuig Pastor, R.; Martínez-Ibernón, A.; Soto Camino, J. (2020). Influence of hydrated lime on the chloride-induced reinforcement corrosion in eco-efficient concretes made with high-volume fly ash. Materials. 13(22):1-16. https://doi.org/10.3390/ma13225135 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma13225135 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 33202538 | es_ES |
dc.identifier.pmcid | PMC7697276 | es_ES |
dc.relation.pasarela | S\423701 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Isaia, G. C., & Gastaldini, A. L. G. (2009). Concrete sustainability with very high amount of fly ash and slag. Revista IBRACON de Estruturas e Materiais, 2(3), 244-253. doi:10.1590/s1983-41952009000300003 | es_ES |
dc.description.references | Golewski, G. L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218-226. doi:10.1016/j.jclepro.2017.10.065 | es_ES |
dc.description.references | Hanehara, S., Tomosawa, F., Kobayakawa, M., & Hwang, K. (2001). Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement and Concrete Research, 31(1), 31-39. doi:10.1016/s0008-8846(00)00441-5 | es_ES |
dc.description.references | Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009 | es_ES |
dc.description.references | Isaia, G. ., Gastaldini, A. L. ., & Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites, 25(1), 69-76. doi:10.1016/s0958-9465(01)00057-9 | es_ES |
dc.description.references | Simčič, T., Pejovnik, S., De Schutter, G., & Bosiljkov, V. B. (2015). Chloride ion penetration into fly ash modified concrete during wetting–drying cycles. Construction and Building Materials, 93, 1216-1223. doi:10.1016/j.conbuildmat.2015.04.033 | es_ES |
dc.description.references | Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1-7. doi:10.1016/j.cemconres.2011.01.001 | es_ES |
dc.description.references | Delagrave, A., Marchand, J., Ollivier, J.-P., Julien, S., & Hazrati, K. (1997). Chloride binding capacity of various hydrated cement paste systems. Advanced Cement Based Materials, 6(1), 28-35. doi:10.1016/s1065-7355(97)90003-1 | es_ES |
dc.description.references | Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024 | es_ES |
dc.description.references | Lollini, F., Redaelli, E., & Bertolini, L. (2015). Investigation on the effect of supplementary cementitious materials on the critical chloride threshold of steel in concrete. Materials and Structures, 49(10), 4147-4165. doi:10.1617/s11527-015-0778-0 | es_ES |
dc.description.references | Baroghel-Bouny, V., Kinomura, K., Thiery, M., & Moscardelli, S. (2011). Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cement and Concrete Composites, 33(8), 832-847. doi:10.1016/j.cemconcomp.2011.04.007 | es_ES |
dc.description.references | Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials & Design (1980-2015), 36, 655-662. doi:10.1016/j.matdes.2011.11.043 | es_ES |
dc.description.references | Poon, C. S., Lam, L., & Wong, Y. L. (2000). A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447-455. doi:10.1016/s0008-8846(99)00271-9 | es_ES |
dc.description.references | Garcés, P., Andión, L. G., Zornoza, E., Bonilla, M., & Payá, J. (2010). The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 32(3), 204-210. doi:10.1016/j.cemconcomp.2009.11.006 | es_ES |
dc.description.references | Ghafoori, N., Najimi, M., Diawara, H., & Islam, M. S. (2015). Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under continuous and interrupted sulfate exposures. Construction and Building Materials, 78, 85-91. doi:10.1016/j.conbuildmat.2015.01.004 | es_ES |
dc.description.references | Han, C., Shen, W., Ji, X., Wang, Z., Ding, Q., Xu, G., … Tang, X. (2018). Behavior of high performance concrete pastes with different mineral admixtures in simulated seawater environment. Construction and Building Materials, 187, 426-438. doi:10.1016/j.conbuildmat.2018.07.196 | es_ES |
dc.description.references | Zuquan, J., Xia, Z., Tiejun, Z., & Jianqing, L. (2018). Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Construction and Building Materials, 177, 170-183. doi:10.1016/j.conbuildmat.2018.05.120 | es_ES |
dc.description.references | Cheewaket, T., Jaturapitakkul, C., & Chalee, W. (2010). Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Construction and Building Materials, 24(8), 1352-1357. doi:10.1016/j.conbuildmat.2009.12.039 | es_ES |
dc.description.references | Fanghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172-179. doi:10.1016/j.conbuildmat.2015.05.117 | es_ES |
dc.description.references | Alaka, H. A., & Oyedele, L. O. (2016). High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer. Journal of Building Engineering, 8, 81-90. doi:10.1016/j.jobe.2016.09.008 | es_ES |
dc.description.references | Huang, Q., Zhu, X., Liu, D., Zhao, L., & Zhao, M. (2021). Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica. Journal of Building Engineering, 33, 101638. doi:10.1016/j.jobe.2020.101638 | es_ES |
dc.description.references | Anjos, M. A. S., Camões, A., Campos, P., Azeredo, G. A., & Ferreira, R. L. S. (2020). Effect of high volume fly ash and metakaolin with and without hydrated lime on the properties of self-compacting concrete. Journal of Building Engineering, 27, 100985. doi:10.1016/j.jobe.2019.100985 | es_ES |
dc.description.references | Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. doi:10.1016/j.conbuildmat.2020.120606 | es_ES |
dc.description.references | Lorca, P., Calabuig, R., Benlloch, J., Soriano, L., & Payá, J. (2014). Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 64, 535-541. doi:10.1016/j.matdes.2014.08.022 | es_ES |
dc.description.references | Panesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. doi:10.1016/j.conbuildmat.2020.118866 | es_ES |
dc.description.references | Baert, G., Poppe, A.-M., & De Belie, N. (2008). Strength and durability of high-volume fly ash concrete. Structural Concrete, 9(2), 101-108. doi:10.1680/stco.2008.9.2.101 | es_ES |
dc.description.references | Lammertijn, S., & De Belie, N. (2008). Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete. Magazine of Concrete Research, 60(7), 535-545. doi:10.1680/macr.2008.60.7.535 | es_ES |
dc.description.references | Bouzoubaâ, N., Bilodeau, A., Tamtsia, B., & Foo, S. (2010). Carbonation of fly ash concrete: laboratory and field data. Canadian Journal of Civil Engineering, 37(12), 1535-1549. doi:10.1139/l10-081 | es_ES |
dc.description.references | Zhang, Y. M., Sun, W., & Yan, H. D. (2000). Hydration of high-volume fly ash cement pastes. Cement and Concrete Composites, 22(6), 445-452. doi:10.1016/s0958-9465(00)00044-5 | es_ES |
dc.description.references | Zhao, Q., He, X., Zhang, J., & Jiang, J. (2016). Long-age wet curing effect on performance of carbonation resistance of fly ash concrete. Construction and Building Materials, 127, 577-587. doi:10.1016/j.conbuildmat.2016.10.065 | es_ES |
dc.description.references | Barbhuiya, S. A., Gbagbo, J. K., Russell, M. I., & Basheer, P. A. M. (2009). Properties of fly ash concrete modified with hydrated lime and silica fume. Construction and Building Materials, 23(10), 3233-3239. doi:10.1016/j.conbuildmat.2009.06.001 | es_ES |
dc.description.references | Filho, J. H., Medeiros, M. H. F., Pereira, E., Helene, P., & Isaia, G. C. (2013). High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. Journal of Materials in Civil Engineering, 25(3), 411-418. doi:10.1061/(asce)mt.1943-5533.0000596 | es_ES |
dc.description.references | Kumar, M., Singh, S. K., & Singh, N. P. (2012). Heat evolution during the hydration of Portland cement in the presence of fly ash, calcium hydroxide and super plasticizer. Thermochimica Acta, 548, 27-32. doi:10.1016/j.tca.2012.08.028 | es_ES |
dc.description.references | Gunasekara, C., Sandanayake, M., Zhou, Z., Law, D. W., & Setunge, S. (2020). Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Construction and Building Materials, 253, 119205. doi:10.1016/j.conbuildmat.2020.119205 | es_ES |
dc.description.references | Mohammed, M. E., Al-Shathr, B. S., & al-Attar, T. S. (2020). Effect of incorporating hydrated lime on strength gain of high-volume fly ash lightweight concrete. IOP Conference Series: Materials Science and Engineering, 737, 012058. doi:10.1088/1757-899x/737/1/012058 | es_ES |
dc.description.references | Bentz, D. P. (2014). Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cement and Concrete Composites, 53, 214-223. doi:10.1016/j.cemconcomp.2014.06.018 | es_ES |
dc.description.references | Gandía-Romero, J. M., Ramón, J. E., Bataller, R., Palací, D. G., Valcuende, M., & Soto, J. (2016). Influence of the area and distance between electrodes on resistivity measurements of concrete. Materials and Structures, 50(1). doi:10.1617/s11527-016-0925-2 | es_ES |
dc.description.references | Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4-5), 459-471. doi:10.1016/s0958-9465(02)00086-0 | es_ES |
dc.description.references | Matos, P. R. de, Sakata, R. D., & Prudêncio, L. R. (2019). Eco-efficient low binder high-performance self-compacting concretes. Construction and Building Materials, 225, 941-955. doi:10.1016/j.conbuildmat.2019.07.254 | es_ES |
dc.description.references | Hornbostel, K., Larsen, C. K., & Geiker, M. R. (2013). Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites, 39, 60-72. doi:10.1016/j.cemconcomp.2013.03.019 | es_ES |
dc.description.references | Shi, C. (2004). Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cement and Concrete Research, 34(3), 537-545. doi:10.1016/j.cemconres.2003.09.007 | es_ES |
dc.description.references | Li, S., & Roy, D. M. (1986). Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes. Cement and Concrete Research, 16(5), 749-759. doi:10.1016/0008-8846(86)90049-9 | es_ES |
dc.description.references | Ngala, V., Page, C., Parrott, L., & Yu, S. (1995). Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes. Cement and Concrete Research, 25(4), 819-826. doi:10.1016/0008-8846(95)00072-k | es_ES |
dc.description.references | Zhang, T., & Gjørv, O. E. (1996). Diffusion behavior of chloride ions in concrete. Cement and Concrete Research, 26(6), 907-917. doi:10.1016/0008-8846(96)00069-5 | es_ES |
dc.description.references | Amiri, O., Aı̈t-Mokhtar, A., Dumargue, P., & Touchard, G. (2001). Electrochemical modelling of chloride migration in cement based materials. Electrochimica Acta, 46(9), 1267-1275. doi:10.1016/s0013-4686(00)00717-9 | es_ES |
dc.description.references | Shehata, M. H., Thomas, M. D. A., & Bleszynski, R. F. (1999). The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cement and Concrete Research, 29(12), 1915-1920. doi:10.1016/s0008-8846(99)00190-8 | es_ES |
dc.description.references | Alonso, M. C., & Sanchez, M. (2009). Analysis of the variability of chloride threshold values in the literature. Materials and Corrosion, 60(8), 631-637. doi:10.1002/maco.200905296 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |