- -

Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations

Mostrar el registro completo del ítem

Valle, LM.; Grima, C.; Rodríguez, R.; Llopis-Albert, C. (2020). Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations. Journal of Natural Gas Science and Engineering. 81:1-16. https://doi.org/10.1016/j.jngse.2020.103452

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170776

Ficheros en el ítem

Metadatos del ítem

Título: Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations
Autor: Valle, L. M. Grima, C. Rodríguez, R. Llopis-Albert, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The presence of natural fractures in the formation and its degree of heterogeneity condition the injection of CO2 into the aquifer as they affect the migration processes and its storage capacity. In ATAP experimental ...[+]
Palabras clave: Fines migration , Effective porosity , Fractured acidizing , Formation permeability , Carbonate dissolution
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Natural Gas Science and Engineering. (issn: 1875-5100 )
DOI: 10.1016/j.jngse.2020.103452
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jngse.2020.103452
Tipo: Artículo

References

Abba, M. K., Abbas, A. J., Nasr, G. G., Al-Otaibi, A., Burby, M., Saidu, B., & Suleiman, S. M. (2019). Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs: An experimental approach. Journal of Natural Gas Science and Engineering, 71, 103002. doi:10.1016/j.jngse.2019.103002

Al-Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. (2018). Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 68, 99-111. doi:10.1016/j.ijggc.2017.11.011

Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., … Carbonell, R. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6-25. doi:10.1016/j.tecto.2014.04.025 [+]
Abba, M. K., Abbas, A. J., Nasr, G. G., Al-Otaibi, A., Burby, M., Saidu, B., & Suleiman, S. M. (2019). Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs: An experimental approach. Journal of Natural Gas Science and Engineering, 71, 103002. doi:10.1016/j.jngse.2019.103002

Al-Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. (2018). Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 68, 99-111. doi:10.1016/j.ijggc.2017.11.011

Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., … Carbonell, R. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6-25. doi:10.1016/j.tecto.2014.04.025

André, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48(6), 1782-1797. doi:10.1016/j.enconman.2007.01.006

Bachu, S., & Bennion, D. B. (2008). Interfacial Tension between CO2, Freshwater, and Brine in the Range of Pressure from (2 to 27) MPa, Temperature from (20 to 125) °C, and Water Salinity from (0 to 334 000) mg·L−1. Journal of Chemical & Engineering Data, 54(3), 765-775. doi:10.1021/je800529x

Barkman, J. H., Abrams, A., Darley, H. C. H., & Hill, H. J. (1975). An Oil-Coating Process To Stabilize Clays in Fresh Waterflooding Operations(includes associated paper 6405 ). Journal of Petroleum Technology, 27(09), 1053-1059. doi:10.2118/4786-pa

Crockford, P., Telmer, K., & Best, M. (2014). Dissolution kinetics of Devonian carbonates at circum-neutral pH, 50bar pCO2, 105°C, and 0.4M: The importance of complex brine chemistry on reaction rates. Applied Geochemistry, 41, 128-134. doi:10.1016/j.apgeochem.2013.12.008

Chen, D., Pan, Z., & Ye, Z. (2015). Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 139, 383-392. doi:10.1016/j.fuel.2014.09.018

Chen, Y., Hu, S., Hu, R., & Zhou, C. (2015). Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash’s law‐based empirical model. Water Resources Research, 51(4), 2096-2118. doi:10.1002/2014wr016458

Chequer, L., Vaz, A., & Bedrikovetsky, P. (2018). Injectivity decline during low-salinity waterflooding due to fines migration. Journal of Petroleum Science and Engineering, 165, 1054-1072. doi:10.1016/j.petrol.2018.01.012

De Dios, J. C., Delgado, M. A., Marín, J. A., Martinez, C., Ramos, A., Salvador, I., & Valle, L. (2016). Short-term effects of impurities in the CO 2 stream injected into fractured carbonates. International Journal of Greenhouse Gas Control, 54, 727-736. doi:10.1016/j.ijggc.2016.08.032

De Dios, J. C., Delgado, M. A., Martínez, C., Ramos, A., Álvarez, I., Marín, J. A., & Salvador, I. (2017). Hydraulic characterization of fractured carbonates for CO 2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58, 185-200. doi:10.1016/j.ijggc.2017.01.008

De Silva, G. P. D., Ranjith, P. G., & Perera, M. S. A. (2015). Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel, 155, 128-143. doi:10.1016/j.fuel.2015.03.045

Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., … Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141-1157. doi:10.1016/j.ijrmms.2010.06.019

Farajzadeh, R., Bedrikovetsky, P., Lotfollahi, M., & Lake, L. W. (2016). Simultaneous sorption and mechanical entrapment during polymer flow through porous media. Water Resources Research, 52(3), 2279-2298. doi:10.1002/2015wr017885

Farquhar, S. M., Pearce, J. K., Dawson, G. K. W., Golab, A., Sommacal, S., Kirste, D., … Golding, S. D. (2015). A fresh approach to investigating CO 2 storage: Experimental CO 2 –water–rock interactions in a low-salinity reservoir system. Chemical Geology, 399, 98-122. doi:10.1016/j.chemgeo.2014.10.006

Guo, Z., Vu, P. N. H., & Hussain, F. (2018). A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow. International Journal of Coal Geology, 200, 61-76. doi:10.1016/j.coal.2018.10.009

Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites − Part 1: A review. Geochemistry, 76(4), 621-641. doi:10.1016/j.chemer.2016.09.007

Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites – Part 2: Dissolution and alteration of carbonates and feldspars in CO2-bearing brines. Geochemistry, 76(4), 643-657. doi:10.1016/j.chemer.2016.09.008

Huang, F., Kang, Y., You, L., Li, X., & You, Z. (2018). Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs. Fuel, 222, 193-206. doi:10.1016/j.fuel.2018.02.142

Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4(2), 242-248. doi:10.1016/j.ijggc.2009.10.016

Jia, Y., Lu, Y., Elsworth, D., Fang, Y., & Tang, J. (2018). Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. Journal of Petroleum Science and Engineering, 165, 284-297. doi:10.1016/j.petrol.2018.02.018

Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50. doi:10.1016/j.chemgeo.2013.11.012

Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., & de Lima, V. (2009). Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 24(5), 760-767. doi:10.1016/j.apgeochem.2009.01.001

Khilar, K. C., Fogler, H. S., & Ahluwalia, J. S. (1983). Sandstone water sensitivity: Existence of a critical rate of salinity decrease for particle capture. Chemical Engineering Science, 38(5), 789-800. doi:10.1016/0009-2509(83)80188-2

Kim, J., & Moridis, G. J. (2015). Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. International Journal of Rock Mechanics and Mining Sciences, 76, 127-137. doi:10.1016/j.ijrmms.2015.02.013

Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C., & Yardley, B. W. D. (2014). Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophysical Research Letters, 41(2), 399-406. doi:10.1002/2013gl058534

Le Gallo, Y., & de Dios, J. (2018). Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences, 8(9), 354. doi:10.3390/geosciences8090354

Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165-187. doi:10.1017/s0022112088000953

Li, N., Dai, J., Liu, C., Liu, P., Zhang, Y., Luo, Z., & Zhao, L. (2015). Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development. Petroleum, 1(3), 206-216. doi:10.1016/j.petlm.2015.06.002

Liu, R., Yu, L., & Jiang, Y. (2016). Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. Journal of Natural Gas Science and Engineering, 33, 1330-1341. doi:10.1016/j.jngse.2016.05.043

Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q., Karra, S., … Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509. doi:10.1016/j.apenergy.2015.03.023

Ogaya, X., Ledo, J., Queralt, P., Marcuello, Á., & Quintà, A. (2013). First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: A magnetotelluric 2D characterization. International Journal of Greenhouse Gas Control, 13, 168-179. doi:10.1016/j.ijggc.2012.12.023

Othman, F., Yu, M., Kamali, F., & Hussain, F. (2018). Fines migration during supercritical CO2 injection in sandstone. Journal of Natural Gas Science and Engineering, 56, 344-357. doi:10.1016/j.jngse.2018.06.001

Park, Y.-C., Kim, S., Lee, J. H., & Shinn, Y. J. (2019). Effect of reducing irreducible water saturation in a near-well region on CO2 injectivity and storage capacity. International Journal of Greenhouse Gas Control, 86, 134-145. doi:10.1016/j.ijggc.2019.04.014

Patil, S., Tawfiq, K., & Chen, G. (2011). COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY. Journal of Urban and Environmental Engineering, 5(2), 84-90. doi:10.4090/juee.2011.v5n2.084090

Peysson, Y., André, L., & Azaroual, M. (2014). Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. International Journal of Greenhouse Gas Control, 22, 291-300. doi:10.1016/j.ijggc.2013.10.031

Vu, H. P., Black, J. R., & Haese, R. R. (2018). The geochemical effects of O2 and SO2 as CO2 impurities on fluid-rock reactions in a CO2 storage reservoir. International Journal of Greenhouse Gas Control, 68, 86-98. doi:10.1016/j.ijggc.2017.11.001

Pokrovsky, O. S., Golubev, S. V., & Schott, J. (2005). Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3-4), 239-255. doi:10.1016/j.chemgeo.2004.12.012

Quesada, S., Robles, S., & Rosales, I. (2005). Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque–Cantabrian basin, northern Spain. Journal of the Geological Society, 162(3), 531-548. doi:10.1144/0016-764903-041

Rabbani, E., Davarpanah, A., & Memariani, M. (2018). An experimental study of acidizing operation performances on the wellbore productivity index enhancement. Journal of Petroleum Exploration and Production Technology, 8(4), 1243-1253. doi:10.1007/s13202-018-0441-8

Russell, T., Pham, D., Neishaboor, M. T., Badalyan, A., Behr, A., Genolet, L., … Bedrikovetsky, P. (2017). Effects of kaolinite in rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243-255. doi:10.1016/j.jngse.2017.05.020

Russell, T., Wong, K., Zeinijahromi, A., & Bedrikovetsky, P. (2018). Effects of delayed particle detachment on injectivity decline due to fines migration. Journal of Hydrology, 564, 1099-1109. doi:10.1016/j.jhydrol.2018.07.067

Shen, C., Bradford, S. A., Li, T., Li, B., & Huang, Y. (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6). doi:10.1007/s11051-018-4265-8

Shi, Y., & Wang, C.-Y. (1986). Pore pressure generation in sedimentary basins: Overloading versus aquathermal. Journal of Geophysical Research, 91(B2), 2153. doi:10.1029/jb091ib02p02153

Soong, Y., Goodman, A. ., McCarthy-Jones, J. ., & Baltrus, J. . (2004). Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 45(11-12), 1845-1859. doi:10.1016/j.enconman.2003.09.029

Takenouchi, S., & Kennedy, G. C. (1964). The binary system H 2 O-CO 2 at high temperatures and pressures. American Journal of Science, 262(9), 1055-1074. doi:10.2475/ajs.262.9.1055

Tavani, S. (2012). Plate kinematics in the Cantabrian domain of the Pyrenean orogen. Solid Earth, 3(2), 265-292. doi:10.5194/se-3-265-2012

Valle, L.M., Martínez, C., 2015. Patente Nacional: Equipo para ensayos petrofísicos. P201231913.2015.

Valle, L. M., Rodríguez, R., Grima, C., & Martínez, C. (2018). Effects of supercritical CO2 injection on sandstone wettability and capillary trapping. International Journal of Greenhouse Gas Control, 78, 341-348. doi:10.1016/j.ijggc.2018.09.005

Wang, L., Yao, B., Xie, H., Winterfeld, P. H., Kneafsey, T. J., Yin, X., & Wu, Y.-S. (2017). CO2 injection-induced fracturing in naturally fractured shale rocks. Energy, 139, 1094-1110. doi:10.1016/j.energy.2017.08.031

Yan, W., Crandall, D., Bruner, K., Ning, W., Gill, M., Xiaochun, L., & Bromhal, G. (2013). Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos basin, China for CO2 Aquifer Storage. Energy Procedia, 37, 5055-5062. doi:10.1016/j.egypro.2013.06.419

Yan, Q., Lemanski, C., Karpyn, Z. T., & Ayala, L. F. (2015). Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. Journal of Natural Gas Science and Engineering, 24, 99-105. doi:10.1016/j.jngse.2015.03.017

Yang, D., Tontiwachwuthikul, P., & Gu, Y. (2005). Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C. Journal of Chemical & Engineering Data, 50(4), 1242-1249. doi:10.1021/je0500227

Yang, D., Gu, Y., & Tontiwachwuthikul, P. (2007). Wettability Determination of the Reservoir Brine−Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1), 504-509. doi:10.1021/ef700383x

Yuan, B., Wood, D. A., & Yu, W. (2015). Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015). Journal of Natural Gas Science and Engineering, 26, 1414-1421. doi:10.1016/j.jngse.2015.09.001

Yue, H., Liu, F., Xue, H., Sang, Y., Zhou, C., & Wang, Y. (2018). Numerical simulation and field application of diverting acid acidizing in the Lower Cambrian Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(3), 204-211. doi:10.1016/j.ngib.2018.04.007

Zeinijahromi, A., Farajzadeh, R., (Hans) Bruining, J., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel, 176, 222-236. doi:10.1016/j.fuel.2016.02.066

Zhang, X., Ge, J., Kamali, F., Othman, F., Wang, Y., & Le-Hussain, F. (2020). Wettability of sandstone rocks and their mineral components during CO2 injection in aquifers: Implications for fines migration. Journal of Natural Gas Science and Engineering, 73, 103050. doi:10.1016/j.jngse.2019.103050

Zhao, L., Pan, Y., Liu, Y., Meng, X., Guo, Y., & Liu, P. (2018). Research and performance evaluation on an HA integrated acid system for sandstone acidizing. Natural Gas Industry B, 5(2), 156-161. doi:10.1016/j.ngib.2018.04.002

Zhao, Z., Jing, L., Neretnieks, I., & Moreno, L. (2011). Numerical modeling of stress effects on solute transport in fractured rocks. Computers and Geotechnics, 38(2), 113-126. doi:10.1016/j.compgeo.2010.10.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem