Mostrar el registro sencillo del ítem
dc.contributor.author | Valle, L. M. | es_ES |
dc.contributor.author | Grima, C. | es_ES |
dc.contributor.author | Rodríguez, R. | es_ES |
dc.contributor.author | Llopis-Albert, Carlos | es_ES |
dc.date.accessioned | 2021-07-29T03:30:56Z | |
dc.date.available | 2021-07-29T03:30:56Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 1875-5100 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170776 | |
dc.description.abstract | [EN] The presence of natural fractures in the formation and its degree of heterogeneity condition the injection of CO2 into the aquifer as they affect the migration processes and its storage capacity. In ATAP experimental facility the petrophysical behavior of two carbonate formations was studied, with different proportions of limestone, dolomite, quartz and anhydrite and fissures sealed mainly by potassium aluminosilicates and iron sulphides. Actual storage conditions (135/141 bar and 44/46 degrees C) corresponding to a depth of around 1500 m and continuous injection at a constant flow rate of 1 cc/min of 10% and 15% of HCl, HCl/Acetic (CH3COOH) 10%/10% and scCO2 (supercritical CO2)/brine 50%/50%, was applied to the brine saturated rock samples (core-flooding). Considering laminar flow through the fractures, the flow injected is proportional to the pressure drop according to the "cubic law" that takes into account the width and length of the fractures. This is used to evaluate the injectivity of the storage. The variations in the pressure drop are due to the dragging of detached fines in the dissolution of the carbonates of the filled fissures that can cause their opening or blocking. The efficacy of pure scCO2 enriched brine injection was determined to dissolve the carbonates of the store formation compared to other methods such as the injection of acids used in the oil industry for the stimulation of producing wells. Scanning Electron Microscope (SEM) studies of the injection surfaces and Computerized Tomography (CT) analysis of the samples before and after injection of the acid mixtures have been performed. The dissolution facilitates the injectivity and increases the capacity favoring the tightness of the storage by the phenomenon of controlled dissolution-precipitation of the carbonates. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Natural Gas Science and Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fines migration | es_ES |
dc.subject | Effective porosity | es_ES |
dc.subject | Fractured acidizing | es_ES |
dc.subject | Formation permeability | es_ES |
dc.subject | Carbonate dissolution | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jngse.2020.103452 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Valle, LM.; Grima, C.; Rodríguez, R.; Llopis-Albert, C. (2020). Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations. Journal of Natural Gas Science and Engineering. 81:1-16. https://doi.org/10.1016/j.jngse.2020.103452 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jngse.2020.103452 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 81 | es_ES |
dc.relation.pasarela | S\415173 | es_ES |
dc.description.references | Abba, M. K., Abbas, A. J., Nasr, G. G., Al-Otaibi, A., Burby, M., Saidu, B., & Suleiman, S. M. (2019). Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs: An experimental approach. Journal of Natural Gas Science and Engineering, 71, 103002. doi:10.1016/j.jngse.2019.103002 | es_ES |
dc.description.references | Al-Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. (2018). Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 68, 99-111. doi:10.1016/j.ijggc.2017.11.011 | es_ES |
dc.description.references | Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., … Carbonell, R. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6-25. doi:10.1016/j.tecto.2014.04.025 | es_ES |
dc.description.references | André, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48(6), 1782-1797. doi:10.1016/j.enconman.2007.01.006 | es_ES |
dc.description.references | Bachu, S., & Bennion, D. B. (2008). Interfacial Tension between CO2, Freshwater, and Brine in the Range of Pressure from (2 to 27) MPa, Temperature from (20 to 125) °C, and Water Salinity from (0 to 334 000) mg·L−1. Journal of Chemical & Engineering Data, 54(3), 765-775. doi:10.1021/je800529x | es_ES |
dc.description.references | Barkman, J. H., Abrams, A., Darley, H. C. H., & Hill, H. J. (1975). An Oil-Coating Process To Stabilize Clays in Fresh Waterflooding Operations(includes associated paper 6405 ). Journal of Petroleum Technology, 27(09), 1053-1059. doi:10.2118/4786-pa | es_ES |
dc.description.references | Crockford, P., Telmer, K., & Best, M. (2014). Dissolution kinetics of Devonian carbonates at circum-neutral pH, 50bar pCO2, 105°C, and 0.4M: The importance of complex brine chemistry on reaction rates. Applied Geochemistry, 41, 128-134. doi:10.1016/j.apgeochem.2013.12.008 | es_ES |
dc.description.references | Chen, D., Pan, Z., & Ye, Z. (2015). Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 139, 383-392. doi:10.1016/j.fuel.2014.09.018 | es_ES |
dc.description.references | Chen, Y., Hu, S., Hu, R., & Zhou, C. (2015). Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash’s law‐based empirical model. Water Resources Research, 51(4), 2096-2118. doi:10.1002/2014wr016458 | es_ES |
dc.description.references | Chequer, L., Vaz, A., & Bedrikovetsky, P. (2018). Injectivity decline during low-salinity waterflooding due to fines migration. Journal of Petroleum Science and Engineering, 165, 1054-1072. doi:10.1016/j.petrol.2018.01.012 | es_ES |
dc.description.references | De Dios, J. C., Delgado, M. A., Marín, J. A., Martinez, C., Ramos, A., Salvador, I., & Valle, L. (2016). Short-term effects of impurities in the CO 2 stream injected into fractured carbonates. International Journal of Greenhouse Gas Control, 54, 727-736. doi:10.1016/j.ijggc.2016.08.032 | es_ES |
dc.description.references | De Dios, J. C., Delgado, M. A., Martínez, C., Ramos, A., Álvarez, I., Marín, J. A., & Salvador, I. (2017). Hydraulic characterization of fractured carbonates for CO 2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58, 185-200. doi:10.1016/j.ijggc.2017.01.008 | es_ES |
dc.description.references | De Silva, G. P. D., Ranjith, P. G., & Perera, M. S. A. (2015). Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel, 155, 128-143. doi:10.1016/j.fuel.2015.03.045 | es_ES |
dc.description.references | Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., … Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141-1157. doi:10.1016/j.ijrmms.2010.06.019 | es_ES |
dc.description.references | Farajzadeh, R., Bedrikovetsky, P., Lotfollahi, M., & Lake, L. W. (2016). Simultaneous sorption and mechanical entrapment during polymer flow through porous media. Water Resources Research, 52(3), 2279-2298. doi:10.1002/2015wr017885 | es_ES |
dc.description.references | Farquhar, S. M., Pearce, J. K., Dawson, G. K. W., Golab, A., Sommacal, S., Kirste, D., … Golding, S. D. (2015). A fresh approach to investigating CO 2 storage: Experimental CO 2 –water–rock interactions in a low-salinity reservoir system. Chemical Geology, 399, 98-122. doi:10.1016/j.chemgeo.2014.10.006 | es_ES |
dc.description.references | Guo, Z., Vu, P. N. H., & Hussain, F. (2018). A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow. International Journal of Coal Geology, 200, 61-76. doi:10.1016/j.coal.2018.10.009 | es_ES |
dc.description.references | Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites − Part 1: A review. Geochemistry, 76(4), 621-641. doi:10.1016/j.chemer.2016.09.007 | es_ES |
dc.description.references | Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites – Part 2: Dissolution and alteration of carbonates and feldspars in CO2-bearing brines. Geochemistry, 76(4), 643-657. doi:10.1016/j.chemer.2016.09.008 | es_ES |
dc.description.references | Huang, F., Kang, Y., You, L., Li, X., & You, Z. (2018). Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs. Fuel, 222, 193-206. doi:10.1016/j.fuel.2018.02.142 | es_ES |
dc.description.references | Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4(2), 242-248. doi:10.1016/j.ijggc.2009.10.016 | es_ES |
dc.description.references | Jia, Y., Lu, Y., Elsworth, D., Fang, Y., & Tang, J. (2018). Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. Journal of Petroleum Science and Engineering, 165, 284-297. doi:10.1016/j.petrol.2018.02.018 | es_ES |
dc.description.references | Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50. doi:10.1016/j.chemgeo.2013.11.012 | es_ES |
dc.description.references | Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., & de Lima, V. (2009). Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 24(5), 760-767. doi:10.1016/j.apgeochem.2009.01.001 | es_ES |
dc.description.references | Khilar, K. C., Fogler, H. S., & Ahluwalia, J. S. (1983). Sandstone water sensitivity: Existence of a critical rate of salinity decrease for particle capture. Chemical Engineering Science, 38(5), 789-800. doi:10.1016/0009-2509(83)80188-2 | es_ES |
dc.description.references | Kim, J., & Moridis, G. J. (2015). Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. International Journal of Rock Mechanics and Mining Sciences, 76, 127-137. doi:10.1016/j.ijrmms.2015.02.013 | es_ES |
dc.description.references | Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C., & Yardley, B. W. D. (2014). Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophysical Research Letters, 41(2), 399-406. doi:10.1002/2013gl058534 | es_ES |
dc.description.references | Le Gallo, Y., & de Dios, J. (2018). Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences, 8(9), 354. doi:10.3390/geosciences8090354 | es_ES |
dc.description.references | Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165-187. doi:10.1017/s0022112088000953 | es_ES |
dc.description.references | Li, N., Dai, J., Liu, C., Liu, P., Zhang, Y., Luo, Z., & Zhao, L. (2015). Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development. Petroleum, 1(3), 206-216. doi:10.1016/j.petlm.2015.06.002 | es_ES |
dc.description.references | Liu, R., Yu, L., & Jiang, Y. (2016). Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. Journal of Natural Gas Science and Engineering, 33, 1330-1341. doi:10.1016/j.jngse.2016.05.043 | es_ES |
dc.description.references | Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q., Karra, S., … Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509. doi:10.1016/j.apenergy.2015.03.023 | es_ES |
dc.description.references | Ogaya, X., Ledo, J., Queralt, P., Marcuello, Á., & Quintà, A. (2013). First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: A magnetotelluric 2D characterization. International Journal of Greenhouse Gas Control, 13, 168-179. doi:10.1016/j.ijggc.2012.12.023 | es_ES |
dc.description.references | Othman, F., Yu, M., Kamali, F., & Hussain, F. (2018). Fines migration during supercritical CO2 injection in sandstone. Journal of Natural Gas Science and Engineering, 56, 344-357. doi:10.1016/j.jngse.2018.06.001 | es_ES |
dc.description.references | Park, Y.-C., Kim, S., Lee, J. H., & Shinn, Y. J. (2019). Effect of reducing irreducible water saturation in a near-well region on CO2 injectivity and storage capacity. International Journal of Greenhouse Gas Control, 86, 134-145. doi:10.1016/j.ijggc.2019.04.014 | es_ES |
dc.description.references | Patil, S., Tawfiq, K., & Chen, G. (2011). COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY. Journal of Urban and Environmental Engineering, 5(2), 84-90. doi:10.4090/juee.2011.v5n2.084090 | es_ES |
dc.description.references | Peysson, Y., André, L., & Azaroual, M. (2014). Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. International Journal of Greenhouse Gas Control, 22, 291-300. doi:10.1016/j.ijggc.2013.10.031 | es_ES |
dc.description.references | Vu, H. P., Black, J. R., & Haese, R. R. (2018). The geochemical effects of O2 and SO2 as CO2 impurities on fluid-rock reactions in a CO2 storage reservoir. International Journal of Greenhouse Gas Control, 68, 86-98. doi:10.1016/j.ijggc.2017.11.001 | es_ES |
dc.description.references | Pokrovsky, O. S., Golubev, S. V., & Schott, J. (2005). Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3-4), 239-255. doi:10.1016/j.chemgeo.2004.12.012 | es_ES |
dc.description.references | Quesada, S., Robles, S., & Rosales, I. (2005). Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque–Cantabrian basin, northern Spain. Journal of the Geological Society, 162(3), 531-548. doi:10.1144/0016-764903-041 | es_ES |
dc.description.references | Rabbani, E., Davarpanah, A., & Memariani, M. (2018). An experimental study of acidizing operation performances on the wellbore productivity index enhancement. Journal of Petroleum Exploration and Production Technology, 8(4), 1243-1253. doi:10.1007/s13202-018-0441-8 | es_ES |
dc.description.references | Russell, T., Pham, D., Neishaboor, M. T., Badalyan, A., Behr, A., Genolet, L., … Bedrikovetsky, P. (2017). Effects of kaolinite in rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243-255. doi:10.1016/j.jngse.2017.05.020 | es_ES |
dc.description.references | Russell, T., Wong, K., Zeinijahromi, A., & Bedrikovetsky, P. (2018). Effects of delayed particle detachment on injectivity decline due to fines migration. Journal of Hydrology, 564, 1099-1109. doi:10.1016/j.jhydrol.2018.07.067 | es_ES |
dc.description.references | Shen, C., Bradford, S. A., Li, T., Li, B., & Huang, Y. (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6). doi:10.1007/s11051-018-4265-8 | es_ES |
dc.description.references | Shi, Y., & Wang, C.-Y. (1986). Pore pressure generation in sedimentary basins: Overloading versus aquathermal. Journal of Geophysical Research, 91(B2), 2153. doi:10.1029/jb091ib02p02153 | es_ES |
dc.description.references | Soong, Y., Goodman, A. ., McCarthy-Jones, J. ., & Baltrus, J. . (2004). Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 45(11-12), 1845-1859. doi:10.1016/j.enconman.2003.09.029 | es_ES |
dc.description.references | Takenouchi, S., & Kennedy, G. C. (1964). The binary system H 2 O-CO 2 at high temperatures and pressures. American Journal of Science, 262(9), 1055-1074. doi:10.2475/ajs.262.9.1055 | es_ES |
dc.description.references | Tavani, S. (2012). Plate kinematics in the Cantabrian domain of the Pyrenean orogen. Solid Earth, 3(2), 265-292. doi:10.5194/se-3-265-2012 | es_ES |
dc.description.references | Valle, L.M., Martínez, C., 2015. Patente Nacional: Equipo para ensayos petrofísicos. P201231913.2015. | es_ES |
dc.description.references | Valle, L. M., Rodríguez, R., Grima, C., & Martínez, C. (2018). Effects of supercritical CO2 injection on sandstone wettability and capillary trapping. International Journal of Greenhouse Gas Control, 78, 341-348. doi:10.1016/j.ijggc.2018.09.005 | es_ES |
dc.description.references | Wang, L., Yao, B., Xie, H., Winterfeld, P. H., Kneafsey, T. J., Yin, X., & Wu, Y.-S. (2017). CO2 injection-induced fracturing in naturally fractured shale rocks. Energy, 139, 1094-1110. doi:10.1016/j.energy.2017.08.031 | es_ES |
dc.description.references | Yan, W., Crandall, D., Bruner, K., Ning, W., Gill, M., Xiaochun, L., & Bromhal, G. (2013). Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos basin, China for CO2 Aquifer Storage. Energy Procedia, 37, 5055-5062. doi:10.1016/j.egypro.2013.06.419 | es_ES |
dc.description.references | Yan, Q., Lemanski, C., Karpyn, Z. T., & Ayala, L. F. (2015). Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. Journal of Natural Gas Science and Engineering, 24, 99-105. doi:10.1016/j.jngse.2015.03.017 | es_ES |
dc.description.references | Yang, D., Tontiwachwuthikul, P., & Gu, Y. (2005). Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C. Journal of Chemical & Engineering Data, 50(4), 1242-1249. doi:10.1021/je0500227 | es_ES |
dc.description.references | Yang, D., Gu, Y., & Tontiwachwuthikul, P. (2007). Wettability Determination of the Reservoir Brine−Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1), 504-509. doi:10.1021/ef700383x | es_ES |
dc.description.references | Yuan, B., Wood, D. A., & Yu, W. (2015). Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015). Journal of Natural Gas Science and Engineering, 26, 1414-1421. doi:10.1016/j.jngse.2015.09.001 | es_ES |
dc.description.references | Yue, H., Liu, F., Xue, H., Sang, Y., Zhou, C., & Wang, Y. (2018). Numerical simulation and field application of diverting acid acidizing in the Lower Cambrian Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(3), 204-211. doi:10.1016/j.ngib.2018.04.007 | es_ES |
dc.description.references | Zeinijahromi, A., Farajzadeh, R., (Hans) Bruining, J., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel, 176, 222-236. doi:10.1016/j.fuel.2016.02.066 | es_ES |
dc.description.references | Zhang, X., Ge, J., Kamali, F., Othman, F., Wang, Y., & Le-Hussain, F. (2020). Wettability of sandstone rocks and their mineral components during CO2 injection in aquifers: Implications for fines migration. Journal of Natural Gas Science and Engineering, 73, 103050. doi:10.1016/j.jngse.2019.103050 | es_ES |
dc.description.references | Zhao, L., Pan, Y., Liu, Y., Meng, X., Guo, Y., & Liu, P. (2018). Research and performance evaluation on an HA integrated acid system for sandstone acidizing. Natural Gas Industry B, 5(2), 156-161. doi:10.1016/j.ngib.2018.04.002 | es_ES |
dc.description.references | Zhao, Z., Jing, L., Neretnieks, I., & Moreno, L. (2011). Numerical modeling of stress effects on solute transport in fractured rocks. Computers and Geotechnics, 38(2), 113-126. doi:10.1016/j.compgeo.2010.10.001 | es_ES |