- -

Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valle, L. M. es_ES
dc.contributor.author Grima, C. es_ES
dc.contributor.author Rodríguez, R. es_ES
dc.contributor.author Llopis-Albert, Carlos es_ES
dc.date.accessioned 2021-07-29T03:30:56Z
dc.date.available 2021-07-29T03:30:56Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1875-5100 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170776
dc.description.abstract [EN] The presence of natural fractures in the formation and its degree of heterogeneity condition the injection of CO2 into the aquifer as they affect the migration processes and its storage capacity. In ATAP experimental facility the petrophysical behavior of two carbonate formations was studied, with different proportions of limestone, dolomite, quartz and anhydrite and fissures sealed mainly by potassium aluminosilicates and iron sulphides. Actual storage conditions (135/141 bar and 44/46 degrees C) corresponding to a depth of around 1500 m and continuous injection at a constant flow rate of 1 cc/min of 10% and 15% of HCl, HCl/Acetic (CH3COOH) 10%/10% and scCO2 (supercritical CO2)/brine 50%/50%, was applied to the brine saturated rock samples (core-flooding). Considering laminar flow through the fractures, the flow injected is proportional to the pressure drop according to the "cubic law" that takes into account the width and length of the fractures. This is used to evaluate the injectivity of the storage. The variations in the pressure drop are due to the dragging of detached fines in the dissolution of the carbonates of the filled fissures that can cause their opening or blocking. The efficacy of pure scCO2 enriched brine injection was determined to dissolve the carbonates of the store formation compared to other methods such as the injection of acids used in the oil industry for the stimulation of producing wells. Scanning Electron Microscope (SEM) studies of the injection surfaces and Computerized Tomography (CT) analysis of the samples before and after injection of the acid mixtures have been performed. The dissolution facilitates the injectivity and increases the capacity favoring the tightness of the storage by the phenomenon of controlled dissolution-precipitation of the carbonates. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Natural Gas Science and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fines migration es_ES
dc.subject Effective porosity es_ES
dc.subject Fractured acidizing es_ES
dc.subject Formation permeability es_ES
dc.subject Carbonate dissolution es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jngse.2020.103452 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Valle, LM.; Grima, C.; Rodríguez, R.; Llopis-Albert, C. (2020). Effect of scCO2-brine mixture on injectivity and storage capacity in rock samples of naturally fractured carbonate formations. Journal of Natural Gas Science and Engineering. 81:1-16. https://doi.org/10.1016/j.jngse.2020.103452 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jngse.2020.103452 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.relation.pasarela S\415173 es_ES
dc.description.references Abba, M. K., Abbas, A. J., Nasr, G. G., Al-Otaibi, A., Burby, M., Saidu, B., & Suleiman, S. M. (2019). Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs: An experimental approach. Journal of Natural Gas Science and Engineering, 71, 103002. doi:10.1016/j.jngse.2019.103002 es_ES
dc.description.references Al-Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. (2018). Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 68, 99-111. doi:10.1016/j.ijggc.2017.11.011 es_ES
dc.description.references Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., … Carbonell, R. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6-25. doi:10.1016/j.tecto.2014.04.025 es_ES
dc.description.references André, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48(6), 1782-1797. doi:10.1016/j.enconman.2007.01.006 es_ES
dc.description.references Bachu, S., & Bennion, D. B. (2008). Interfacial Tension between CO2, Freshwater, and Brine in the Range of Pressure from (2 to 27) MPa, Temperature from (20 to 125) °C, and Water Salinity from (0 to 334 000) mg·L−1. Journal of Chemical & Engineering Data, 54(3), 765-775. doi:10.1021/je800529x es_ES
dc.description.references Barkman, J. H., Abrams, A., Darley, H. C. H., & Hill, H. J. (1975). An Oil-Coating Process To Stabilize Clays in Fresh Waterflooding Operations(includes associated paper 6405 ). Journal of Petroleum Technology, 27(09), 1053-1059. doi:10.2118/4786-pa es_ES
dc.description.references Crockford, P., Telmer, K., & Best, M. (2014). Dissolution kinetics of Devonian carbonates at circum-neutral pH, 50bar pCO2, 105°C, and 0.4M: The importance of complex brine chemistry on reaction rates. Applied Geochemistry, 41, 128-134. doi:10.1016/j.apgeochem.2013.12.008 es_ES
dc.description.references Chen, D., Pan, Z., & Ye, Z. (2015). Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 139, 383-392. doi:10.1016/j.fuel.2014.09.018 es_ES
dc.description.references Chen, Y., Hu, S., Hu, R., & Zhou, C. (2015). Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash’s law‐based empirical model. Water Resources Research, 51(4), 2096-2118. doi:10.1002/2014wr016458 es_ES
dc.description.references Chequer, L., Vaz, A., & Bedrikovetsky, P. (2018). Injectivity decline during low-salinity waterflooding due to fines migration. Journal of Petroleum Science and Engineering, 165, 1054-1072. doi:10.1016/j.petrol.2018.01.012 es_ES
dc.description.references De Dios, J. C., Delgado, M. A., Marín, J. A., Martinez, C., Ramos, A., Salvador, I., & Valle, L. (2016). Short-term effects of impurities in the CO 2 stream injected into fractured carbonates. International Journal of Greenhouse Gas Control, 54, 727-736. doi:10.1016/j.ijggc.2016.08.032 es_ES
dc.description.references De Dios, J. C., Delgado, M. A., Martínez, C., Ramos, A., Álvarez, I., Marín, J. A., & Salvador, I. (2017). Hydraulic characterization of fractured carbonates for CO 2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58, 185-200. doi:10.1016/j.ijggc.2017.01.008 es_ES
dc.description.references De Silva, G. P. D., Ranjith, P. G., & Perera, M. S. A. (2015). Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel, 155, 128-143. doi:10.1016/j.fuel.2015.03.045 es_ES
dc.description.references Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., … Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141-1157. doi:10.1016/j.ijrmms.2010.06.019 es_ES
dc.description.references Farajzadeh, R., Bedrikovetsky, P., Lotfollahi, M., & Lake, L. W. (2016). Simultaneous sorption and mechanical entrapment during polymer flow through porous media. Water Resources Research, 52(3), 2279-2298. doi:10.1002/2015wr017885 es_ES
dc.description.references Farquhar, S. M., Pearce, J. K., Dawson, G. K. W., Golab, A., Sommacal, S., Kirste, D., … Golding, S. D. (2015). A fresh approach to investigating CO 2 storage: Experimental CO 2 –water–rock interactions in a low-salinity reservoir system. Chemical Geology, 399, 98-122. doi:10.1016/j.chemgeo.2014.10.006 es_ES
dc.description.references Guo, Z., Vu, P. N. H., & Hussain, F. (2018). A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow. International Journal of Coal Geology, 200, 61-76. doi:10.1016/j.coal.2018.10.009 es_ES
dc.description.references Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites − Part 1: A review. Geochemistry, 76(4), 621-641. doi:10.1016/j.chemer.2016.09.007 es_ES
dc.description.references Holzheid, A. (2016). Dissolution kinetics of selected natural minerals relevant to potential CO2-injection sites – Part 2: Dissolution and alteration of carbonates and feldspars in CO2-bearing brines. Geochemistry, 76(4), 643-657. doi:10.1016/j.chemer.2016.09.008 es_ES
dc.description.references Huang, F., Kang, Y., You, L., Li, X., & You, Z. (2018). Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs. Fuel, 222, 193-206. doi:10.1016/j.fuel.2018.02.142 es_ES
dc.description.references Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4(2), 242-248. doi:10.1016/j.ijggc.2009.10.016 es_ES
dc.description.references Jia, Y., Lu, Y., Elsworth, D., Fang, Y., & Tang, J. (2018). Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. Journal of Petroleum Science and Engineering, 165, 284-297. doi:10.1016/j.petrol.2018.02.018 es_ES
dc.description.references Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50. doi:10.1016/j.chemgeo.2013.11.012 es_ES
dc.description.references Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., & de Lima, V. (2009). Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 24(5), 760-767. doi:10.1016/j.apgeochem.2009.01.001 es_ES
dc.description.references Khilar, K. C., Fogler, H. S., & Ahluwalia, J. S. (1983). Sandstone water sensitivity: Existence of a critical rate of salinity decrease for particle capture. Chemical Engineering Science, 38(5), 789-800. doi:10.1016/0009-2509(83)80188-2 es_ES
dc.description.references Kim, J., & Moridis, G. J. (2015). Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. International Journal of Rock Mechanics and Mining Sciences, 76, 127-137. doi:10.1016/j.ijrmms.2015.02.013 es_ES
dc.description.references Lamy-Chappuis, B., Angus, D., Fisher, Q., Grattoni, C., & Yardley, B. W. D. (2014). Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophysical Research Letters, 41(2), 399-406. doi:10.1002/2013gl058534 es_ES
dc.description.references Le Gallo, Y., & de Dios, J. (2018). Geological Model of a Storage Complex for a CO2 Storage Operation in a Naturally-Fractured Carbonate Formation. Geosciences, 8(9), 354. doi:10.3390/geosciences8090354 es_ES
dc.description.references Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165-187. doi:10.1017/s0022112088000953 es_ES
dc.description.references Li, N., Dai, J., Liu, C., Liu, P., Zhang, Y., Luo, Z., & Zhao, L. (2015). Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development. Petroleum, 1(3), 206-216. doi:10.1016/j.petlm.2015.06.002 es_ES
dc.description.references Liu, R., Yu, L., & Jiang, Y. (2016). Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. Journal of Natural Gas Science and Engineering, 33, 1330-1341. doi:10.1016/j.jngse.2016.05.043 es_ES
dc.description.references Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q., Karra, S., … Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509. doi:10.1016/j.apenergy.2015.03.023 es_ES
dc.description.references Ogaya, X., Ledo, J., Queralt, P., Marcuello, Á., & Quintà, A. (2013). First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 geological storage: A magnetotelluric 2D characterization. International Journal of Greenhouse Gas Control, 13, 168-179. doi:10.1016/j.ijggc.2012.12.023 es_ES
dc.description.references Othman, F., Yu, M., Kamali, F., & Hussain, F. (2018). Fines migration during supercritical CO2 injection in sandstone. Journal of Natural Gas Science and Engineering, 56, 344-357. doi:10.1016/j.jngse.2018.06.001 es_ES
dc.description.references Park, Y.-C., Kim, S., Lee, J. H., & Shinn, Y. J. (2019). Effect of reducing irreducible water saturation in a near-well region on CO2 injectivity and storage capacity. International Journal of Greenhouse Gas Control, 86, 134-145. doi:10.1016/j.ijggc.2019.04.014 es_ES
dc.description.references Patil, S., Tawfiq, K., & Chen, G. (2011). COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY. Journal of Urban and Environmental Engineering, 5(2), 84-90. doi:10.4090/juee.2011.v5n2.084090 es_ES
dc.description.references Peysson, Y., André, L., & Azaroual, M. (2014). Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. International Journal of Greenhouse Gas Control, 22, 291-300. doi:10.1016/j.ijggc.2013.10.031 es_ES
dc.description.references Vu, H. P., Black, J. R., & Haese, R. R. (2018). The geochemical effects of O2 and SO2 as CO2 impurities on fluid-rock reactions in a CO2 storage reservoir. International Journal of Greenhouse Gas Control, 68, 86-98. doi:10.1016/j.ijggc.2017.11.001 es_ES
dc.description.references Pokrovsky, O. S., Golubev, S. V., & Schott, J. (2005). Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chemical Geology, 217(3-4), 239-255. doi:10.1016/j.chemgeo.2004.12.012 es_ES
dc.description.references Quesada, S., Robles, S., & Rosales, I. (2005). Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque–Cantabrian basin, northern Spain. Journal of the Geological Society, 162(3), 531-548. doi:10.1144/0016-764903-041 es_ES
dc.description.references Rabbani, E., Davarpanah, A., & Memariani, M. (2018). An experimental study of acidizing operation performances on the wellbore productivity index enhancement. Journal of Petroleum Exploration and Production Technology, 8(4), 1243-1253. doi:10.1007/s13202-018-0441-8 es_ES
dc.description.references Russell, T., Pham, D., Neishaboor, M. T., Badalyan, A., Behr, A., Genolet, L., … Bedrikovetsky, P. (2017). Effects of kaolinite in rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243-255. doi:10.1016/j.jngse.2017.05.020 es_ES
dc.description.references Russell, T., Wong, K., Zeinijahromi, A., & Bedrikovetsky, P. (2018). Effects of delayed particle detachment on injectivity decline due to fines migration. Journal of Hydrology, 564, 1099-1109. doi:10.1016/j.jhydrol.2018.07.067 es_ES
dc.description.references Shen, C., Bradford, S. A., Li, T., Li, B., & Huang, Y. (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6). doi:10.1007/s11051-018-4265-8 es_ES
dc.description.references Shi, Y., & Wang, C.-Y. (1986). Pore pressure generation in sedimentary basins: Overloading versus aquathermal. Journal of Geophysical Research, 91(B2), 2153. doi:10.1029/jb091ib02p02153 es_ES
dc.description.references Soong, Y., Goodman, A. ., McCarthy-Jones, J. ., & Baltrus, J. . (2004). Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 45(11-12), 1845-1859. doi:10.1016/j.enconman.2003.09.029 es_ES
dc.description.references Takenouchi, S., & Kennedy, G. C. (1964). The binary system H 2 O-CO 2 at high temperatures and pressures. American Journal of Science, 262(9), 1055-1074. doi:10.2475/ajs.262.9.1055 es_ES
dc.description.references Tavani, S. (2012). Plate kinematics in the Cantabrian domain of the Pyrenean orogen. Solid Earth, 3(2), 265-292. doi:10.5194/se-3-265-2012 es_ES
dc.description.references Valle, L.M., Martínez, C., 2015. Patente Nacional: Equipo para ensayos petrofísicos. P201231913.2015. es_ES
dc.description.references Valle, L. M., Rodríguez, R., Grima, C., & Martínez, C. (2018). Effects of supercritical CO2 injection on sandstone wettability and capillary trapping. International Journal of Greenhouse Gas Control, 78, 341-348. doi:10.1016/j.ijggc.2018.09.005 es_ES
dc.description.references Wang, L., Yao, B., Xie, H., Winterfeld, P. H., Kneafsey, T. J., Yin, X., & Wu, Y.-S. (2017). CO2 injection-induced fracturing in naturally fractured shale rocks. Energy, 139, 1094-1110. doi:10.1016/j.energy.2017.08.031 es_ES
dc.description.references Yan, W., Crandall, D., Bruner, K., Ning, W., Gill, M., Xiaochun, L., & Bromhal, G. (2013). Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos basin, China for CO2 Aquifer Storage. Energy Procedia, 37, 5055-5062. doi:10.1016/j.egypro.2013.06.419 es_ES
dc.description.references Yan, Q., Lemanski, C., Karpyn, Z. T., & Ayala, L. F. (2015). Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. Journal of Natural Gas Science and Engineering, 24, 99-105. doi:10.1016/j.jngse.2015.03.017 es_ES
dc.description.references Yang, D., Tontiwachwuthikul, P., & Gu, Y. (2005). Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C. Journal of Chemical & Engineering Data, 50(4), 1242-1249. doi:10.1021/je0500227 es_ES
dc.description.references Yang, D., Gu, Y., & Tontiwachwuthikul, P. (2007). Wettability Determination of the Reservoir Brine−Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1), 504-509. doi:10.1021/ef700383x es_ES
dc.description.references Yuan, B., Wood, D. A., & Yu, W. (2015). Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015). Journal of Natural Gas Science and Engineering, 26, 1414-1421. doi:10.1016/j.jngse.2015.09.001 es_ES
dc.description.references Yue, H., Liu, F., Xue, H., Sang, Y., Zhou, C., & Wang, Y. (2018). Numerical simulation and field application of diverting acid acidizing in the Lower Cambrian Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(3), 204-211. doi:10.1016/j.ngib.2018.04.007 es_ES
dc.description.references Zeinijahromi, A., Farajzadeh, R., (Hans) Bruining, J., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel, 176, 222-236. doi:10.1016/j.fuel.2016.02.066 es_ES
dc.description.references Zhang, X., Ge, J., Kamali, F., Othman, F., Wang, Y., & Le-Hussain, F. (2020). Wettability of sandstone rocks and their mineral components during CO2 injection in aquifers: Implications for fines migration. Journal of Natural Gas Science and Engineering, 73, 103050. doi:10.1016/j.jngse.2019.103050 es_ES
dc.description.references Zhao, L., Pan, Y., Liu, Y., Meng, X., Guo, Y., & Liu, P. (2018). Research and performance evaluation on an HA integrated acid system for sandstone acidizing. Natural Gas Industry B, 5(2), 156-161. doi:10.1016/j.ngib.2018.04.002 es_ES
dc.description.references Zhao, Z., Jing, L., Neretnieks, I., & Moreno, L. (2011). Numerical modeling of stress effects on solute transport in fractured rocks. Computers and Geotechnics, 38(2), 113-126. doi:10.1016/j.compgeo.2010.10.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem