- -

Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes

Show full item record

Zambrano Carrullo, JC.; Dalmau-Borrás, A.; Amigó, V.; Navarro-Laboulais, J.; Pereira Falcón, C. (2020). Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes. Journal of the Mechanical Behavior of Biomedical Materials. 112:1-10. https://doi.org/10.1016/j.jmbbm.2020.104063

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170779

Files in this item

Item Metadata

Title: Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes
Author: Zambrano Carrullo, J. C. Dalmau-Borrás, Alba Amigó, Vicente Navarro-Laboulais, J. Pereira Falcón, C.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Embargo end date: 2022-08-27
Abstract:
[EN] Titanium is frequently used as a biomaterial and the importance of Ti-Ag alloys has increased thanks to the antibacterial behavior of silver. In this study, Ti-Ag alloys (5, 10 and 15 wt% Ag) were obtained by two ...[+]
Subjects: Ti-Ag , Powder metallurgy , Mechanical alloying , Corrosion , Biomaterial
Copyrigths: Embargado
Source:
Journal of the Mechanical Behavior of Biomedical Materials. (issn: 1751-6161 )
DOI: 10.1016/j.jmbbm.2020.104063
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jmbbm.2020.104063
Project ID:
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F051/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097810-B-I00/ES/BIOCOMPATIBILIDAD DE NUEVAS ALEACIONES PULVIMETALURGICAS DE TITANIO OBTENIDAS POR TECNOLOGIAS AVANZADAS/
Thanks:
The authors wish to thank the Generalitat Valenciana for support through PROMETEO 2016/040. Alba Dalmau acknowledges the Generalitat Valenciana for her grant (APOSTD/2017/051), the European Commission via FEDER funds to ...[+]
Type: Artículo

References

Bolat, G., Mareci, D., Chelariu, R., Izquierdo, J., González, S., & Souto, R. M. (2013). Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochimica Acta, 113, 470-480. doi:10.1016/j.electacta.2013.09.116

Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533-8554. doi:10.1016/j.biomaterials.2013.07.089

Chen, M., Yang, L., Zhang, L., Han, Y., Lu, Z., Qin, G., & Zhang, E. (2017). Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Materials Science and Engineering: C, 75, 906-917. doi:10.1016/j.msec.2017.02.142 [+]
Bolat, G., Mareci, D., Chelariu, R., Izquierdo, J., González, S., & Souto, R. M. (2013). Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochimica Acta, 113, 470-480. doi:10.1016/j.electacta.2013.09.116

Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533-8554. doi:10.1016/j.biomaterials.2013.07.089

Chen, M., Yang, L., Zhang, L., Han, Y., Lu, Z., Qin, G., & Zhang, E. (2017). Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Materials Science and Engineering: C, 75, 906-917. doi:10.1016/j.msec.2017.02.142

Chen, M., Zhang, E., & Zhang, L. (2016). Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys. Materials Science and Engineering: C, 62, 350-360. doi:10.1016/j.msec.2016.01.081

Cui, W. F., Liu, N., & Qin, G. W. (2016). Microstructures, mechanical properties and corrosion resistance of the ZrxTi (Ag) alloys for dental implant application. Materials Chemistry and Physics, 176, 161-166. doi:10.1016/j.matchemphys.2016.04.009

Marques, I. da S. V., Barão, V. A. R., Cruz, N. C. da, Yuan, J. C.-C., Mesquita, M. F., Ricomini-Filho, A. P., … Mathew, M. T. (2015). Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corrosion Science, 100, 133-146. doi:10.1016/j.corsci.2015.07.019

Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2015). Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Materials Science and Engineering: C, 48, 55-62. doi:10.1016/j.msec.2014.11.036

Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, 102-111. doi:10.1016/j.electacta.2013.01.155

González, J. E. ., & Mirza-Rosca, J. . (1999). Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 471(2), 109-115. doi:10.1016/s0022-0728(99)00260-0

Han, M.-K., Hwang, M.-J., Won, D.-H., Kim, Y.-S., Song, H.-J., & Park, Y.-J. (2014). Massive Transformation in Titanium-Silver Alloys and Its Effect on Their Mechanical Properties and Corrosion Behavior. Materials, 7(9), 6194-6206. doi:10.3390/ma7096194

Hwang, M.-J., Park, E.-J., Moon, W.-J., Song, H.-J., & Park, Y.-J. (2015). Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corrosion Science, 96, 152-159. doi:10.1016/j.corsci.2015.04.007

Landolt, D., n.d. Corrosion and Surface Chemistry of Metals. CRC Press.

Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K., & Zhang, E. (2014). Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Materials Science and Engineering: C, 35, 392-400. doi:10.1016/j.msec.2013.11.028

Liu, X., Chen, S., Tsoi, J. K. H., & Matinlinna, J. P. (2017). Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials, 4(5), 315-323. doi:10.1093/rb/rbx027

Lu, L., & Lai, M. O. (1995). Formation of new materials in the solid state by mechanical alloying. Materials & Design, 16(1), 33-39. doi:10.1016/0261-3069(95)00005-j

Mareci, D., Bocanu, C., Aelenei, N., & Nemtoi, G. (2017). Galvanic Corrosion Between Ti/Ti6Al4V and Various Dental Alloys. Eurasian Chemico-Technological Journal, 6(3), 221. doi:10.18321/ectj615

Miotto, L. N., Fais, L. M. G., Ribeiro, A. L. R., & Vaz, L. G. (2016). Surface properties of Ti-35Nb-7Zr-5Ta. The Journal of Prosthetic Dentistry, 116(1), 102-111. doi:10.1016/j.prosdent.2015.10.024

Mohan, P., Elshalakany, A. B., Osman, T. A., Amigo, V., & Mohamed, A. (2017). Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys. Journal of Alloys and Compounds, 729, 1215-1225. doi:10.1016/j.jallcom.2017.09.255

Oh, K.-T., Shim, H.-M., & Kim, K.-N. (2005). Properties of titanium-silver alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B(1), 649-658. doi:10.1002/jbm.b.30259

Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3

Pina, V. G., Amigó, V., & Muñoz, A. I. (2016). Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys. Corrosion Science, 109, 115-125. doi:10.1016/j.corsci.2016.02.014

Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences, 57(4), 192-199. doi:10.1016/j.job.2015.08.001

Shim, H.-M., Oh, K.-T., Woo, J.-Y., Hwang, C.-J., & Kim, K.-N. (2005). Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 252-259. doi:10.1002/jbm.b.30206

Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9

Szaraniec, B., & Goryczka, T. (2017). Structure and properties of Ti-Ag alloys produced by powder metallurgy. Journal of Alloys and Compounds, 709, 464-472. doi:10.1016/j.jallcom.2017.03.155

TAKADA, Y., NAKAJIMA, H., OKUNO, O., & OKABE, T. (2001). Microstructure and Corrosion Behavior of Binary Titanium Alloys with Beta-stabilizing Elements. Dental Materials Journal, 20(1), 34-52. doi:10.4012/dmj.20.34

TAKAHASHI, M., KIKUCHI, M., HATORI, K., ORII, Y., SASAKI, K., & TAKADA, Y. (2009). Calcium Phosphate Formation on Ti-Ag Alloys in Simulated Body Fluid. Journal of Biomechanical Science and Engineering, 4(3), 318-325. doi:10.1299/jbse.4.318

Takahashi, M., Kikuchi, M., & Takada, Y. (2011). Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution. Metals and Materials International, 17(1), 175-179. doi:10.1007/s12540-011-0224-y

TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., OKABE, T., & OKUNO, O. (2006). Electrochemical Behavior of Cast Ti-Ag Alloys. Dental Materials Journal, 25(3), 516-523. doi:10.4012/dmj.25.516

TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., & OKUNO, O. (2002). Mechanical Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys. Dental Materials Journal, 21(3), 270-280. doi:10.4012/dmj.21.270

Ureña, J., Gordo, E., Ruiz-Navas, E., Vilaboa, N., Saldaña, L., & Jiménez-Morales, A. (2017). Electrochemical comparative study on corrosion behavior of conventional and powder metallurgy titanium alloys in physiological conditions. Metal Powder Report, 72(2), 118-123. doi:10.1016/j.mprp.2016.04.003

Ureña, J., Tsipas, S., Pinto, A. M., Toptan, F., Gordo, E., & Jiménez-Morales, A. (2018). Corrosion and tribocorrosion behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corrosion Science, 140, 51-60. doi:10.1016/j.corsci.2018.06.024

Xie, F., He, X., Lv, Y., Wu, M., He, X., & Qu, X. (2015). Selective laser sintered porous Ti–(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corrosion Science, 95, 117-124. doi:10.1016/j.corsci.2015.03.005

Yetim, T. (2016). Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution. Journal of Bionic Engineering, 13(3), 397-405. doi:10.1016/s1672-6529(16)60311-6

Zhang, B. B., Qiu, K. J., Wang, B. L., Li, L., & Zheng, Y. F. (2012). Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control. Journal of Materials Science & Technology, 28(9), 779-784. doi:10.1016/s1005-0302(12)60130-3

Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti–5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Materials, 27(3), 214-220. doi:10.1016/j.dental.2010.10.005

Zhang, B. B., Zheng, Y. F., & Liu, Y. (2009). Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions. Dental Materials, 25(5), 672-677. doi:10.1016/j.dental.2008.10.016

Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., Li, M., & Yang, K. (2013). A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Materials Science and Engineering: C, 33(7), 4280-4287. doi:10.1016/j.msec.2013.06.016

Zhang, E., Wang, X., Chen, M., & Hou, B. (2016). Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Materials Science and Engineering: C, 69, 1210-1221. doi:10.1016/j.msec.2016.08.033

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record