Mostrar el registro sencillo del ítem
dc.contributor.author | Zambrano Carrullo, J. C. | es_ES |
dc.contributor.author | Dalmau-Borrás, Alba | es_ES |
dc.contributor.author | Amigó, Vicente | es_ES |
dc.contributor.author | Navarro-Laboulais, J. | es_ES |
dc.contributor.author | Pereira Falcón, C. | es_ES |
dc.date.accessioned | 2021-07-29T03:31:04Z | |
dc.date.available | 2021-07-29T03:31:04Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 1751-6161 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170779 | |
dc.description.abstract | [EN] Titanium is frequently used as a biomaterial and the importance of Ti-Ag alloys has increased thanks to the antibacterial behavior of silver. In this study, Ti-Ag alloys (5, 10 and 15 wt% Ag) were obtained by two different powder metallurgy routes: blended elemental (BE) and mechanical alloying (MA). The influence of the powder mixture methodology on both microstructure and electrochemical behavior was analyzed. Powders were com-pacted at 600 and 900 MPa, respectively, and sintered at high vacuum for 3 h at 950 degrees C. The obtained Ti-Ag alloys were microstructurally characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD), and mechanically tested by hardness and bending tests. Electrochemical tests were run using a three-electrode cell in an artificial Fusayama saliva solution. Open-Circuit Potential (OCP), polarization curves, potentiostatic tests and Electrochemical Impedance Spectroscopy (EIS) techniques were employed to evaluate the corrosion resistance of the studied Ti-Ag alloys. The initial characteristics of powders before sintering and after blend/alloying modified the electrochemical behavior of the Ti-Ag-sintered alloys and were determined. The samples obtained with the BE powders better resisted corrosion than the MA samples, and this behavior was directly related to the quantity and distribution of intermetallic Ti2Ag. A large quantity of intermetallics present on both the edge and inside grains reduced the corrosion resistance of TiAg alloys. | es_ES |
dc.description.sponsorship | The authors wish to thank the Generalitat Valenciana for support through PROMETEO 2016/040. Alba Dalmau acknowledges the Generalitat Valenciana for her grant (APOSTD/2017/051), the European Commission via FEDER funds to purchase equipment for research purposes in ISIRYM and the Ministry of Science, Innovation and Universities for the project RTI2018-097810-B-I00. Finally, they thank the Microscopy Service at Universitat Politecnica de Valencia in Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of the Mechanical Behavior of Biomedical Materials | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ti-Ag | es_ES |
dc.subject | Powder metallurgy | es_ES |
dc.subject | Mechanical alloying | es_ES |
dc.subject | Corrosion | es_ES |
dc.subject | Biomaterial | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmbbm.2020.104063 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F051/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097810-B-I00/ES/BIOCOMPATIBILIDAD DE NUEVAS ALEACIONES PULVIMETALURGICAS DE TITANIO OBTENIDAS POR TECNOLOGIAS AVANZADAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Zambrano Carrullo, JC.; Dalmau-Borrás, A.; Amigó, V.; Navarro-Laboulais, J.; Pereira Falcón, C. (2020). Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes. Journal of the Mechanical Behavior of Biomedical Materials. 112:1-10. https://doi.org/10.1016/j.jmbbm.2020.104063 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmbbm.2020.104063 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 112 | es_ES |
dc.identifier.pmid | 32911226 | es_ES |
dc.relation.pasarela | S\417648 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Bolat, G., Mareci, D., Chelariu, R., Izquierdo, J., González, S., & Souto, R. M. (2013). Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochimica Acta, 113, 470-480. doi:10.1016/j.electacta.2013.09.116 | es_ES |
dc.description.references | Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533-8554. doi:10.1016/j.biomaterials.2013.07.089 | es_ES |
dc.description.references | Chen, M., Yang, L., Zhang, L., Han, Y., Lu, Z., Qin, G., & Zhang, E. (2017). Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Materials Science and Engineering: C, 75, 906-917. doi:10.1016/j.msec.2017.02.142 | es_ES |
dc.description.references | Chen, M., Zhang, E., & Zhang, L. (2016). Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys. Materials Science and Engineering: C, 62, 350-360. doi:10.1016/j.msec.2016.01.081 | es_ES |
dc.description.references | Cui, W. F., Liu, N., & Qin, G. W. (2016). Microstructures, mechanical properties and corrosion resistance of the ZrxTi (Ag) alloys for dental implant application. Materials Chemistry and Physics, 176, 161-166. doi:10.1016/j.matchemphys.2016.04.009 | es_ES |
dc.description.references | Marques, I. da S. V., Barão, V. A. R., Cruz, N. C. da, Yuan, J. C.-C., Mesquita, M. F., Ricomini-Filho, A. P., … Mathew, M. T. (2015). Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corrosion Science, 100, 133-146. doi:10.1016/j.corsci.2015.07.019 | es_ES |
dc.description.references | Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2015). Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Materials Science and Engineering: C, 48, 55-62. doi:10.1016/j.msec.2014.11.036 | es_ES |
dc.description.references | Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, 102-111. doi:10.1016/j.electacta.2013.01.155 | es_ES |
dc.description.references | González, J. E. ., & Mirza-Rosca, J. . (1999). Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 471(2), 109-115. doi:10.1016/s0022-0728(99)00260-0 | es_ES |
dc.description.references | Han, M.-K., Hwang, M.-J., Won, D.-H., Kim, Y.-S., Song, H.-J., & Park, Y.-J. (2014). Massive Transformation in Titanium-Silver Alloys and Its Effect on Their Mechanical Properties and Corrosion Behavior. Materials, 7(9), 6194-6206. doi:10.3390/ma7096194 | es_ES |
dc.description.references | Hwang, M.-J., Park, E.-J., Moon, W.-J., Song, H.-J., & Park, Y.-J. (2015). Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corrosion Science, 96, 152-159. doi:10.1016/j.corsci.2015.04.007 | es_ES |
dc.description.references | Landolt, D., n.d. Corrosion and Surface Chemistry of Metals. CRC Press. | es_ES |
dc.description.references | Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K., & Zhang, E. (2014). Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Materials Science and Engineering: C, 35, 392-400. doi:10.1016/j.msec.2013.11.028 | es_ES |
dc.description.references | Liu, X., Chen, S., Tsoi, J. K. H., & Matinlinna, J. P. (2017). Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials, 4(5), 315-323. doi:10.1093/rb/rbx027 | es_ES |
dc.description.references | Lu, L., & Lai, M. O. (1995). Formation of new materials in the solid state by mechanical alloying. Materials & Design, 16(1), 33-39. doi:10.1016/0261-3069(95)00005-j | es_ES |
dc.description.references | Mareci, D., Bocanu, C., Aelenei, N., & Nemtoi, G. (2017). Galvanic Corrosion Between Ti/Ti6Al4V and Various Dental Alloys. Eurasian Chemico-Technological Journal, 6(3), 221. doi:10.18321/ectj615 | es_ES |
dc.description.references | Miotto, L. N., Fais, L. M. G., Ribeiro, A. L. R., & Vaz, L. G. (2016). Surface properties of Ti-35Nb-7Zr-5Ta. The Journal of Prosthetic Dentistry, 116(1), 102-111. doi:10.1016/j.prosdent.2015.10.024 | es_ES |
dc.description.references | Mohan, P., Elshalakany, A. B., Osman, T. A., Amigo, V., & Mohamed, A. (2017). Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys. Journal of Alloys and Compounds, 729, 1215-1225. doi:10.1016/j.jallcom.2017.09.255 | es_ES |
dc.description.references | Oh, K.-T., Shim, H.-M., & Kim, K.-N. (2005). Properties of titanium-silver alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B(1), 649-658. doi:10.1002/jbm.b.30259 | es_ES |
dc.description.references | Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3 | es_ES |
dc.description.references | Pina, V. G., Amigó, V., & Muñoz, A. I. (2016). Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys. Corrosion Science, 109, 115-125. doi:10.1016/j.corsci.2016.02.014 | es_ES |
dc.description.references | Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences, 57(4), 192-199. doi:10.1016/j.job.2015.08.001 | es_ES |
dc.description.references | Shim, H.-M., Oh, K.-T., Woo, J.-Y., Hwang, C.-J., & Kim, K.-N. (2005). Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 252-259. doi:10.1002/jbm.b.30206 | es_ES |
dc.description.references | Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9 | es_ES |
dc.description.references | Szaraniec, B., & Goryczka, T. (2017). Structure and properties of Ti-Ag alloys produced by powder metallurgy. Journal of Alloys and Compounds, 709, 464-472. doi:10.1016/j.jallcom.2017.03.155 | es_ES |
dc.description.references | TAKADA, Y., NAKAJIMA, H., OKUNO, O., & OKABE, T. (2001). Microstructure and Corrosion Behavior of Binary Titanium Alloys with Beta-stabilizing Elements. Dental Materials Journal, 20(1), 34-52. doi:10.4012/dmj.20.34 | es_ES |
dc.description.references | TAKAHASHI, M., KIKUCHI, M., HATORI, K., ORII, Y., SASAKI, K., & TAKADA, Y. (2009). Calcium Phosphate Formation on Ti-Ag Alloys in Simulated Body Fluid. Journal of Biomechanical Science and Engineering, 4(3), 318-325. doi:10.1299/jbse.4.318 | es_ES |
dc.description.references | Takahashi, M., Kikuchi, M., & Takada, Y. (2011). Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution. Metals and Materials International, 17(1), 175-179. doi:10.1007/s12540-011-0224-y | es_ES |
dc.description.references | TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., OKABE, T., & OKUNO, O. (2006). Electrochemical Behavior of Cast Ti-Ag Alloys. Dental Materials Journal, 25(3), 516-523. doi:10.4012/dmj.25.516 | es_ES |
dc.description.references | TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., & OKUNO, O. (2002). Mechanical Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys. Dental Materials Journal, 21(3), 270-280. doi:10.4012/dmj.21.270 | es_ES |
dc.description.references | Ureña, J., Gordo, E., Ruiz-Navas, E., Vilaboa, N., Saldaña, L., & Jiménez-Morales, A. (2017). Electrochemical comparative study on corrosion behavior of conventional and powder metallurgy titanium alloys in physiological conditions. Metal Powder Report, 72(2), 118-123. doi:10.1016/j.mprp.2016.04.003 | es_ES |
dc.description.references | Ureña, J., Tsipas, S., Pinto, A. M., Toptan, F., Gordo, E., & Jiménez-Morales, A. (2018). Corrosion and tribocorrosion behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corrosion Science, 140, 51-60. doi:10.1016/j.corsci.2018.06.024 | es_ES |
dc.description.references | Xie, F., He, X., Lv, Y., Wu, M., He, X., & Qu, X. (2015). Selective laser sintered porous Ti–(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corrosion Science, 95, 117-124. doi:10.1016/j.corsci.2015.03.005 | es_ES |
dc.description.references | Yetim, T. (2016). Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution. Journal of Bionic Engineering, 13(3), 397-405. doi:10.1016/s1672-6529(16)60311-6 | es_ES |
dc.description.references | Zhang, B. B., Qiu, K. J., Wang, B. L., Li, L., & Zheng, Y. F. (2012). Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control. Journal of Materials Science & Technology, 28(9), 779-784. doi:10.1016/s1005-0302(12)60130-3 | es_ES |
dc.description.references | Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti–5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Materials, 27(3), 214-220. doi:10.1016/j.dental.2010.10.005 | es_ES |
dc.description.references | Zhang, B. B., Zheng, Y. F., & Liu, Y. (2009). Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions. Dental Materials, 25(5), 672-677. doi:10.1016/j.dental.2008.10.016 | es_ES |
dc.description.references | Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., Li, M., & Yang, K. (2013). A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Materials Science and Engineering: C, 33(7), 4280-4287. doi:10.1016/j.msec.2013.06.016 | es_ES |
dc.description.references | Zhang, E., Wang, X., Chen, M., & Hou, B. (2016). Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Materials Science and Engineering: C, 69, 1210-1221. doi:10.1016/j.msec.2016.08.033 | es_ES |