- -

Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zambrano Carrullo, J. C. es_ES
dc.contributor.author Dalmau-Borrás, Alba es_ES
dc.contributor.author Amigó, Vicente es_ES
dc.contributor.author Navarro-Laboulais, J. es_ES
dc.contributor.author Pereira Falcón, C. es_ES
dc.date.accessioned 2021-07-29T03:31:04Z
dc.date.available 2021-07-29T03:31:04Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1751-6161 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170779
dc.description.abstract [EN] Titanium is frequently used as a biomaterial and the importance of Ti-Ag alloys has increased thanks to the antibacterial behavior of silver. In this study, Ti-Ag alloys (5, 10 and 15 wt% Ag) were obtained by two different powder metallurgy routes: blended elemental (BE) and mechanical alloying (MA). The influence of the powder mixture methodology on both microstructure and electrochemical behavior was analyzed. Powders were com-pacted at 600 and 900 MPa, respectively, and sintered at high vacuum for 3 h at 950 degrees C. The obtained Ti-Ag alloys were microstructurally characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD), and mechanically tested by hardness and bending tests. Electrochemical tests were run using a three-electrode cell in an artificial Fusayama saliva solution. Open-Circuit Potential (OCP), polarization curves, potentiostatic tests and Electrochemical Impedance Spectroscopy (EIS) techniques were employed to evaluate the corrosion resistance of the studied Ti-Ag alloys. The initial characteristics of powders before sintering and after blend/alloying modified the electrochemical behavior of the Ti-Ag-sintered alloys and were determined. The samples obtained with the BE powders better resisted corrosion than the MA samples, and this behavior was directly related to the quantity and distribution of intermetallic Ti2Ag. A large quantity of intermetallics present on both the edge and inside grains reduced the corrosion resistance of TiAg alloys. es_ES
dc.description.sponsorship The authors wish to thank the Generalitat Valenciana for support through PROMETEO 2016/040. Alba Dalmau acknowledges the Generalitat Valenciana for her grant (APOSTD/2017/051), the European Commission via FEDER funds to purchase equipment for research purposes in ISIRYM and the Ministry of Science, Innovation and Universities for the project RTI2018-097810-B-I00. Finally, they thank the Microscopy Service at Universitat Politecnica de Valencia in Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of the Mechanical Behavior of Biomedical Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ti-Ag es_ES
dc.subject Powder metallurgy es_ES
dc.subject Mechanical alloying es_ES
dc.subject Corrosion es_ES
dc.subject Biomaterial es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmbbm.2020.104063 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F051/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097810-B-I00/ES/BIOCOMPATIBILIDAD DE NUEVAS ALEACIONES PULVIMETALURGICAS DE TITANIO OBTENIDAS POR TECNOLOGIAS AVANZADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Zambrano Carrullo, JC.; Dalmau-Borrás, A.; Amigó, V.; Navarro-Laboulais, J.; Pereira Falcón, C. (2020). Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes. Journal of the Mechanical Behavior of Biomedical Materials. 112:1-10. https://doi.org/10.1016/j.jmbbm.2020.104063 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jmbbm.2020.104063 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.identifier.pmid 32911226 es_ES
dc.relation.pasarela S\417648 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Bolat, G., Mareci, D., Chelariu, R., Izquierdo, J., González, S., & Souto, R. M. (2013). Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochimica Acta, 113, 470-480. doi:10.1016/j.electacta.2013.09.116 es_ES
dc.description.references Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533-8554. doi:10.1016/j.biomaterials.2013.07.089 es_ES
dc.description.references Chen, M., Yang, L., Zhang, L., Han, Y., Lu, Z., Qin, G., & Zhang, E. (2017). Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Materials Science and Engineering: C, 75, 906-917. doi:10.1016/j.msec.2017.02.142 es_ES
dc.description.references Chen, M., Zhang, E., & Zhang, L. (2016). Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys. Materials Science and Engineering: C, 62, 350-360. doi:10.1016/j.msec.2016.01.081 es_ES
dc.description.references Cui, W. F., Liu, N., & Qin, G. W. (2016). Microstructures, mechanical properties and corrosion resistance of the ZrxTi (Ag) alloys for dental implant application. Materials Chemistry and Physics, 176, 161-166. doi:10.1016/j.matchemphys.2016.04.009 es_ES
dc.description.references Marques, I. da S. V., Barão, V. A. R., Cruz, N. C. da, Yuan, J. C.-C., Mesquita, M. F., Ricomini-Filho, A. P., … Mathew, M. T. (2015). Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corrosion Science, 100, 133-146. doi:10.1016/j.corsci.2015.07.019 es_ES
dc.description.references Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2015). Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Materials Science and Engineering: C, 48, 55-62. doi:10.1016/j.msec.2014.11.036 es_ES
dc.description.references Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, 102-111. doi:10.1016/j.electacta.2013.01.155 es_ES
dc.description.references González, J. E. ., & Mirza-Rosca, J. . (1999). Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 471(2), 109-115. doi:10.1016/s0022-0728(99)00260-0 es_ES
dc.description.references Han, M.-K., Hwang, M.-J., Won, D.-H., Kim, Y.-S., Song, H.-J., & Park, Y.-J. (2014). Massive Transformation in Titanium-Silver Alloys and Its Effect on Their Mechanical Properties and Corrosion Behavior. Materials, 7(9), 6194-6206. doi:10.3390/ma7096194 es_ES
dc.description.references Hwang, M.-J., Park, E.-J., Moon, W.-J., Song, H.-J., & Park, Y.-J. (2015). Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corrosion Science, 96, 152-159. doi:10.1016/j.corsci.2015.04.007 es_ES
dc.description.references Landolt, D., n.d. Corrosion and Surface Chemistry of Metals. CRC Press. es_ES
dc.description.references Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K., & Zhang, E. (2014). Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Materials Science and Engineering: C, 35, 392-400. doi:10.1016/j.msec.2013.11.028 es_ES
dc.description.references Liu, X., Chen, S., Tsoi, J. K. H., & Matinlinna, J. P. (2017). Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials, 4(5), 315-323. doi:10.1093/rb/rbx027 es_ES
dc.description.references Lu, L., & Lai, M. O. (1995). Formation of new materials in the solid state by mechanical alloying. Materials & Design, 16(1), 33-39. doi:10.1016/0261-3069(95)00005-j es_ES
dc.description.references Mareci, D., Bocanu, C., Aelenei, N., & Nemtoi, G. (2017). Galvanic Corrosion Between Ti/Ti6Al4V and Various Dental Alloys. Eurasian Chemico-Technological Journal, 6(3), 221. doi:10.18321/ectj615 es_ES
dc.description.references Miotto, L. N., Fais, L. M. G., Ribeiro, A. L. R., & Vaz, L. G. (2016). Surface properties of Ti-35Nb-7Zr-5Ta. The Journal of Prosthetic Dentistry, 116(1), 102-111. doi:10.1016/j.prosdent.2015.10.024 es_ES
dc.description.references Mohan, P., Elshalakany, A. B., Osman, T. A., Amigo, V., & Mohamed, A. (2017). Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys. Journal of Alloys and Compounds, 729, 1215-1225. doi:10.1016/j.jallcom.2017.09.255 es_ES
dc.description.references Oh, K.-T., Shim, H.-M., & Kim, K.-N. (2005). Properties of titanium-silver alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B(1), 649-658. doi:10.1002/jbm.b.30259 es_ES
dc.description.references Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3 es_ES
dc.description.references Pina, V. G., Amigó, V., & Muñoz, A. I. (2016). Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys. Corrosion Science, 109, 115-125. doi:10.1016/j.corsci.2016.02.014 es_ES
dc.description.references Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences, 57(4), 192-199. doi:10.1016/j.job.2015.08.001 es_ES
dc.description.references Shim, H.-M., Oh, K.-T., Woo, J.-Y., Hwang, C.-J., & Kim, K.-N. (2005). Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 252-259. doi:10.1002/jbm.b.30206 es_ES
dc.description.references Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9 es_ES
dc.description.references Szaraniec, B., & Goryczka, T. (2017). Structure and properties of Ti-Ag alloys produced by powder metallurgy. Journal of Alloys and Compounds, 709, 464-472. doi:10.1016/j.jallcom.2017.03.155 es_ES
dc.description.references TAKADA, Y., NAKAJIMA, H., OKUNO, O., & OKABE, T. (2001). Microstructure and Corrosion Behavior of Binary Titanium Alloys with Beta-stabilizing Elements. Dental Materials Journal, 20(1), 34-52. doi:10.4012/dmj.20.34 es_ES
dc.description.references TAKAHASHI, M., KIKUCHI, M., HATORI, K., ORII, Y., SASAKI, K., & TAKADA, Y. (2009). Calcium Phosphate Formation on Ti-Ag Alloys in Simulated Body Fluid. Journal of Biomechanical Science and Engineering, 4(3), 318-325. doi:10.1299/jbse.4.318 es_ES
dc.description.references Takahashi, M., Kikuchi, M., & Takada, Y. (2011). Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution. Metals and Materials International, 17(1), 175-179. doi:10.1007/s12540-011-0224-y es_ES
dc.description.references TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., OKABE, T., & OKUNO, O. (2006). Electrochemical Behavior of Cast Ti-Ag Alloys. Dental Materials Journal, 25(3), 516-523. doi:10.4012/dmj.25.516 es_ES
dc.description.references TAKAHASHI, M., KIKUCHI, M., TAKADA, Y., & OKUNO, O. (2002). Mechanical Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys. Dental Materials Journal, 21(3), 270-280. doi:10.4012/dmj.21.270 es_ES
dc.description.references Ureña, J., Gordo, E., Ruiz-Navas, E., Vilaboa, N., Saldaña, L., & Jiménez-Morales, A. (2017). Electrochemical comparative study on corrosion behavior of conventional and powder metallurgy titanium alloys in physiological conditions. Metal Powder Report, 72(2), 118-123. doi:10.1016/j.mprp.2016.04.003 es_ES
dc.description.references Ureña, J., Tsipas, S., Pinto, A. M., Toptan, F., Gordo, E., & Jiménez-Morales, A. (2018). Corrosion and tribocorrosion behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corrosion Science, 140, 51-60. doi:10.1016/j.corsci.2018.06.024 es_ES
dc.description.references Xie, F., He, X., Lv, Y., Wu, M., He, X., & Qu, X. (2015). Selective laser sintered porous Ti–(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corrosion Science, 95, 117-124. doi:10.1016/j.corsci.2015.03.005 es_ES
dc.description.references Yetim, T. (2016). Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution. Journal of Bionic Engineering, 13(3), 397-405. doi:10.1016/s1672-6529(16)60311-6 es_ES
dc.description.references Zhang, B. B., Qiu, K. J., Wang, B. L., Li, L., & Zheng, Y. F. (2012). Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control. Journal of Materials Science & Technology, 28(9), 779-784. doi:10.1016/s1005-0302(12)60130-3 es_ES
dc.description.references Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti–5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Materials, 27(3), 214-220. doi:10.1016/j.dental.2010.10.005 es_ES
dc.description.references Zhang, B. B., Zheng, Y. F., & Liu, Y. (2009). Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions. Dental Materials, 25(5), 672-677. doi:10.1016/j.dental.2008.10.016 es_ES
dc.description.references Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., Li, M., & Yang, K. (2013). A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Materials Science and Engineering: C, 33(7), 4280-4287. doi:10.1016/j.msec.2013.06.016 es_ES
dc.description.references Zhang, E., Wang, X., Chen, M., & Hou, B. (2016). Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Materials Science and Engineering: C, 69, 1210-1221. doi:10.1016/j.msec.2016.08.033 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem