- -

Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components

Show simple item record

Files in this item

dc.contributor.author Peña-Gómez, Nataly es_ES
dc.contributor.author Ruiz Rico, María es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author Fernández Segovia, Isabel es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.date.accessioned 2021-07-30T03:30:58Z
dc.date.available 2021-07-30T03:30:58Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0023-6438 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170955
dc.description.abstract [EN] The brewing industry uses conventional pasteurization to assure beer microbial stability, but this process compromises its quality characteristics. This study proposes a novel cold pasteurization technology based on filtration through silica microparticles (5, 10, 25 or 50 mu m) functionalized with essential oil components (EOCs). After the synthesis and characterization of the supports, craft beer was filtered through a bed of EOC-functionalized particles to assess their capability to entrap and/or inactivate beer microbiota. The microbiological analysis of filtered beer showed that the supports presented remarkable removal capacity against Escherichia coli, mesophilic bacteria, lactic acid bacteria, and mold and yeast. The preservation potential of the filtration technology remained steady after filtering multiple samples and previous washing with a high water volume. The determination of potential leaching of the immobilized EOCs resulted in zero release of the grafted molecules in the beer samples filtered through the bed of particles. Moreover, differences among control and filtered beers detected by a panel of untrained judges were scarce or nonexistent. The proposed technology can be considered an effective novel mild preservation method for craft beer as it can reduce the microbial load of the product and can prevent negative effects on the sensory properties of beverages. es_ES
dc.description.sponsorship Authors gratefully acknowledge the financial support from the Ministerio de Ciencia, Innovacion y Universidades, the Agencia Estatal de Investigacion and FEDER-EU (Project RTI2018-101599-B-C21). N.P.G. is grateful to Generalitat Valencia for her grant. The authors also thank the Electron Microscopy Service at the UPV for support. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof LWT - Food Science and Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cold pasteurization es_ES
dc.subject Immobilization es_ES
dc.subject Naturally-occurring es_ES
dc.subject Antimicrobials es_ES
dc.subject Spoilage microorganism es_ES
dc.subject Beverages. es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.lwt.2019.108626 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-1-R/ES/SISTEMAS HIBRIDOS BASADOS EN SOPORTES BIOCOMPATIBLES PARA EL DESARROLLO DE ANTIMICROBIANOS A PARTIR DE SUSTANCIAS NATURALES Y LIBERACION CONTROLADA DE COMPUESTOS ALIMENTARIOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Peña-Gómez, N.; Ruiz Rico, M.; Pérez-Esteve, É.; Fernández Segovia, I.; Barat Baviera, JM. (2020). Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components. LWT - Food Science and Technology. 117:1-8. https://doi.org/10.1016/j.lwt.2019.108626 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.lwt.2019.108626 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.relation.pasarela S\387098 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 es_ES
dc.description.references Cao, L., Zhou, G., Guo, P., & Li, Y. (2011). Influence of Pasteurising Intensity on Beer Flavour Stability. Journal of the Institute of Brewing, 117(4), 587-592. doi:10.1002/j.2050-0416.2011.tb00508.x es_ES
dc.description.references Chavan, P. S., & Tupe, S. G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control, 46, 115-120. doi:10.1016/j.foodcont.2014.05.007 es_ES
dc.description.references Deng, Y., Bi, H., Yin, H., Yu, J., Dong, J., Yang, M., & Ma, Y. (2018). Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrasonics Sonochemistry, 40, 166-173. doi:10.1016/j.ultsonch.2017.07.017 es_ES
dc.description.references Devi, R., Alemayehu, E., Singh, V., Kumar, A., & Mengistie, E. (2008). Removal of fluoride, arsenic and coliform bacteria by modified homemade filter media from drinking water. Bioresource Technology, 99(7), 2269-2274. doi:10.1016/j.biortech.2007.05.002 es_ES
dc.description.references Fillaudeau, L., & Carrère, H. (2002). Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. Journal of Membrane Science, 196(1), 39-57. doi:10.1016/s0376-7388(01)00568-3 es_ES
dc.description.references Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Effects of High Pressure Homogenization on Beer Quality Attributes. Journal of the Institute of Brewing, 117(2), 195-198. doi:10.1002/j.2050-0416.2011.tb00460.x es_ES
dc.description.references Fuenmayor, C. A., Lemma, S. M., Mannino, S., Mimmo, T., & Scampicchio, M. (2014). Filtration of apple juice by nylon nanofibrous membranes. Journal of Food Engineering, 122, 110-116. doi:10.1016/j.jfoodeng.2013.08.038 es_ES
dc.description.references Gialleli, A.-I., Bekatorou, A., Kanellaki, M., Nigam, P., & Koutinas, A. A. (2016). Apple juice preservation through microbial adsorption by nano/micro-tubular cellulose. Innovative Food Science & Emerging Technologies, 33, 416-421. doi:10.1016/j.ifset.2015.11.006 es_ES
dc.description.references Gil, G., del Mónaco, S., Cerrutti, P., & Galvagno, M. (2004). Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnology Letters, 26(7), 569-574. doi:10.1023/b:bile.0000021957.37426.9b es_ES
dc.description.references Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273-292. doi:10.1016/j.fm.2004.08.006 es_ES
dc.description.references Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiology, 3. doi:10.3389/fmicb.2012.00012 es_ES
dc.description.references Lu, G., Li, C., Liu, P., Cui, H., Yao, Y., & Zhang, Q. (2010). UV inactivation of microorganisms in beer by a novel thin-film apparatus. Food Control, 21(10), 1312-1317. doi:10.1016/j.foodcont.2010.03.007 es_ES
dc.description.references Lund, M. N., Hoff, S., Berner, T. S., Lametsch, R., & Andersen, M. L. (2012). Effect of Pasteurization on the Protein Composition and Oxidative Stability of Beer during Storage. Journal of Agricultural and Food Chemistry, 60(50), 12362-12370. doi:10.1021/jf303044a es_ES
dc.description.references Milani, E. A., Ramsey, J. G., & Silva, F. V. M. (2016). High pressure processing and thermosonication of beer: Comparing the energy requirements and Saccharomyces cerevisiae ascospores inactivation with thermal processing and modeling. Journal of Food Engineering, 181, 35-41. doi:10.1016/j.jfoodeng.2016.02.023 es_ES
dc.description.references Morris, C., Brody, A. L., & Wicker, L. (2007). Non-thermal food processing/preservation technologies: a review with packaging implications. Packaging Technology and Science, 20(4), 275-286. doi:10.1002/pts.789 es_ES
dc.description.references Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006 es_ES
dc.description.references Rota, M. C., Herrera, A., Martínez, R. M., Sotomayor, J. A., & Jordán, M. J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19(7), 681-687. doi:10.1016/j.foodcont.2007.07.007 es_ES
dc.description.references Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 es_ES
dc.description.references Sakamoto, K., & Konings, W. N. (2003). Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology, 89(2-3), 105-124. doi:10.1016/s0168-1605(03)00153-3 es_ES
dc.description.references Valente, I. M., Santos, C. M., Moreira, M. M., & Rodrigues, J. A. (2013). New application of the QuEChERS methodology for the determination of volatile phenols in beverages by liquid chromatography. Journal of Chromatography A, 1271(1), 27-32. doi:10.1016/j.chroma.2012.11.026 es_ES
dc.description.references Vaughan, A., O’Sullivan, T., & Sinderen, D. (2005). Enhancing the Microbiological Stability of Malt and Beer - A Review. Journal of the Institute of Brewing, 111(4), 355-371. doi:10.1002/j.2050-0416.2005.tb00221.x es_ES
dc.description.references Walkling-Ribeiro, M., Rodríguez-González, O., Jayaram, S. H., & Griffiths, M. W. (2011). Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Research International, 44(8), 2524-2533. doi:10.1016/j.foodres.2011.01.046 es_ES
dc.description.references Yang, N., Huang, K., Lyu, C., & Wang, J. (2016). Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review. Food Control, 61, 28-38. doi:10.1016/j.foodcont.2015.09.022 es_ES


This item appears in the following Collection(s)

Show simple item record