- -

Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation

Mostrar el registro completo del ítem

Sabate-Fornons, F.; Jorda Moret, JL.; Sabater Picot, MJ.; Corma Canós, A. (2020). Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation. Journal of Materials Chemistry A. 8(7):3771-3784. https://doi.org/10.1039/c9ta11903e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170956

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation
Autor: Sabate-Fornons, Ferran Jorda Moret, Jose Luis Sabater Picot, Mª José Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Ruthenium has been incorporated into the framework of the cryptomelane type manganese oxide K-OMS-2 ([Ru]-K-OMS2) and the presence of this element into the structure has been assessed by combining analytical and ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry A. (issn: 2050-7488 )
DOI: 10.1039/c9ta11903e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9ta11903e
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101247-B-I00/ES/RECONOCIMIENTO MOLECULAR EN CATALIZADORES SOLIDOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Financial support by the European Union through ERC-AdG-2014-671093 (SynCatMatch), the Ministerio de Economia y Competitividad, Programa Severo Ochoa (SEV2016-0683) and Ministerio de Ciencia Innovacion y Universidades, ...[+]
Tipo: Artículo

References

Chen, H., Wang, Y., & Lv, Y.-K. (2016). Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Advances, 6(59), 54032-54040. doi:10.1039/c6ra10103h

Truong, T. T., Liu, Y., Ren, Y., Trahey, L., & Sun, Y. (2012). Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium–Air Batteries. ACS Nano, 6(9), 8067-8077. doi:10.1021/nn302654p

Huang, M., Zhang, Y., Li, F., Zhang, L., Ruoff, R. S., Wen, Z., & Liu, Q. (2014). Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 4(1). doi:10.1038/srep03878 [+]
Chen, H., Wang, Y., & Lv, Y.-K. (2016). Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Advances, 6(59), 54032-54040. doi:10.1039/c6ra10103h

Truong, T. T., Liu, Y., Ren, Y., Trahey, L., & Sun, Y. (2012). Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium–Air Batteries. ACS Nano, 6(9), 8067-8077. doi:10.1021/nn302654p

Huang, M., Zhang, Y., Li, F., Zhang, L., Ruoff, R. S., Wen, Z., & Liu, Q. (2014). Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 4(1). doi:10.1038/srep03878

Ghodbane, O., Pascal, J.-L., Fraisse, B., & Favier, F. (2010). Structural in Situ Study of the Thermal Behavior of Manganese Dioxide Materials: Toward Selected Electrode Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2(12), 3493-3505. doi:10.1021/am100669k

New and Future Developments in Catalysis , ed. S.L. Suib , Elsevier , Amsterdam , 2013 , ISBN: 9780444538826

Subramanian, N., Viswanathan, B., & Varadarajan, T. K. (2014). A facile, morphology-controlled synthesis of potassium-containing manganese oxide nanostructures for electrochemical supercapacitor application. RSC Adv., 4(64), 33911-33922. doi:10.1039/c4ra05227g

Peluso, M. A., Gambaro, L. A., Pronsato, E., Gazzoli, D., Thomas, H. J., & Sambeth, J. E. (2008). Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catalysis Today, 133-135, 487-492. doi:10.1016/j.cattod.2007.12.132

Yin, H., Dai, X., Zhu, M., Li, F., Feng, X., & Liu, F. (2015). Fe-doped cryptomelane synthesized by refluxing at atmosphere: Structure, properties and photocatalytic degradation of phenol. Journal of Hazardous Materials, 296, 221-229. doi:10.1016/j.jhazmat.2015.04.055

King’ondu, C. K., Opembe, N., Chen, C., Ngala, K., Huang, H., Iyer, A., … Suib, S. L. (2010). Manganese Oxide Octahedral Molecular Sieves (OMS-2) Multiple Framework Substitutions: A New Route to OMS-2 Particle Size and Morphology Control. Advanced Functional Materials, 21(2), 312-323. doi:10.1002/adfm.201001020

DeGuzman, R. N., Shen, Y.-F., Neth, E. J., Suib, S. L., O’Young, C.-L., Levine, S., & Newsam, J. M. (1994). Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure. Chemistry of Materials, 6(6), 815-821. doi:10.1021/cm00042a019

Ding, Y., Shen, X., Sithambaram, S., Gomez, S., Kumar, R., Crisostomo, V. M. B., … Aindow, M. (2005). Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method. Chemistry of Materials, 17(21), 5382-5389. doi:10.1021/cm051294w

Liu, L., Zhao, H., Andino, J. M., & Li, Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2(8), 1817-1828. doi:10.1021/cs300273q

Aldehydes and Ketones, Hamilton & Hardy's, Industrial Toxicology , ed. R. D. Harbison , M. M. Bourgeois and G. T. Johnson , John Wiley and Sons Inc. , 2015 , ISBN: 9780470929735

Moro-oka, Y., Ueda, W., & Lee, K.-H. (2003). The role of bulk oxide ion in the catalytic oxidation reaction over metal oxide catalyst. Journal of Molecular Catalysis A: Chemical, 199(1-2), 139-148. doi:10.1016/s1381-1169(03)00030-x

Mars, P., & van Krevelen, D. W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, 3, 41-59. doi:10.1016/s0009-2509(54)80005-4

Schurz, F., Bauchert, J. M., Merker, T., Schleid, T., Hasse, H., & Gläser, R. (2009). Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Applied Catalysis A: General, 355(1-2), 42-49. doi:10.1016/j.apcata.2008.11.014

Makwana, V. (2002). The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst: A Kinetic and Isotope-Labeling Study. Journal of Catalysis, 210(1), 46-52. doi:10.1006/jcat.2002.3680

Makwana, V. D., Garces, L. J., Liu, J., Cai, J., Son, Y.-C., & Suib, S. L. (2003). Selective oxidation of alcohols using octahedral molecular sieves: influence of synthesis method and property–activity relations. Catalysis Today, 85(2-4), 225-233. doi:10.1016/s0920-5861(03)00390-0

Vicat, J., Fanchon, E., Strobel, P., & Tran Qui, D. (1986). The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallographica Section B Structural Science, 42(2), 162-167. doi:10.1107/s0108768186098415

J. Carvajal , FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr , 1990

Pahalagedara, L. R., Dharmarathna, S., King’ondu, C. K., Pahalagedara, M. N., Meng, Y.-T., Kuo, C.-H., & Suib, S. L. (2014). Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution. The Journal of Physical Chemistry C, 118(35), 20363-20373. doi:10.1021/jp505306q

Genuino, H. C., Meng, Y., Horvath, D. T., Kuo, C.-H., Seraji, M. S., Morey, A. M., … Suib, S. L. (2013). Enhancement of Catalytic Activities of Octahedral Molecular Sieve Manganese Oxide for Total and Preferential CO Oxidation through Vanadium Ion Framework Substitution. ChemCatChem, 5(8), 2306-2317. doi:10.1002/cctc.201300005

Polverejan, M., Villegas, J. C., & Suib, S. L. (2004). Higher Valency Ion Substitution into the Manganese Oxide Framework. Journal of the American Chemical Society, 126(25), 7774-7775. doi:10.1021/ja048985y

L. Pauling , The Nature of the Chemical Bond , Cornell University Press , Ithaca, United States , 3rd edn, 1960

Ahrens, L. H. (1952). The use of ionization potentials Part 1. Ionic radii of the elements. Geochimica et Cosmochimica Acta, 2(3), 155-169. doi:10.1016/0016-7037(52)90004-5

Feng, Q., Kanoh, H., Miyai, Y., & Ooi, K. (1995). Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chemistry of Materials, 7(1), 148-153. doi:10.1021/cm00049a023

Calvert, C., Joesten, R., Ngala, K., Villegas, J., Morey, A., Shen, X., & Suib, S. L. (2008). Synthesis, Characterization, and Rietveld Refinement of Tungsten-Framework-Doped Porous Manganese Oxide (K-OMS-2) Material. Chemistry of Materials, 20(20), 6382-6388. doi:10.1021/cm801146m

Luo, J., Zhang, Q., Garcia-Martinez, J., & Suib, S. L. (2008). Adsorptive and Acidic Properties, Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts. Journal of the American Chemical Society, 130(10), 3198-3207. doi:10.1021/ja077706e

Wu, X., Yu, X., Chen, Z., Huang, Z., & Jing, G. (2019). Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement. Catalysis Science & Technology, 9(15), 4108-4117. doi:10.1039/c9cy01016e

El-Sawy, A. M., King’ondu, C. K., Kuo, C.-H., Kriz, D. A., Guild, C. J., Meng, Y., … Suib, S. L. (2014). X-ray Absorption Spectroscopic Study of a Highly Thermally Stable Manganese Oxide Octahedral Molecular Sieve (OMS-2) with High Oxygen Reduction Reaction Activity. Chemistry of Materials, 26(19), 5752-5760. doi:10.1021/cm5028783

Li, X., Ma, J., Jia, X., Xia, F., Huang, Y., Xu, Y., & Xu, J. (2018). Al-Doping Promoted Aerobic Amidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxamide over Cryptomelane. ACS Sustainable Chemistry & Engineering, 6(6), 8048-8054. doi:10.1021/acssuschemeng.8b01617

Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvåg, H., & Norby, P. (2008). Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers. The Journal of Physical Chemistry C, 112(34), 13134-13140. doi:10.1021/jp804924f

Sultana, S., Ye, Z., Veerapandian, S. K. P., Löfberg, A., De Geyter, N., Morent, R., … Lamonier, J.-F. (2018). Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 307, 20-28. doi:10.1016/j.cattod.2017.05.078

Korotcov, A. V., Huang, Y.-S., Tiong, K.-K., & Tsai, D.-S. (2007). Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals. Journal of Raman Spectroscopy, 38(6), 737-749. doi:10.1002/jrs.1655

Hou, J., Li, Y., Liu, L., Ren, L., & Zhao, X. (2013). Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal of Materials Chemistry A, 1(23), 6736. doi:10.1039/c3ta11566f

Ousmane, M., Perrussel, G., Yan, Z., Clacens, J.-M., De Campo, F., & Pera-Titus, M. (2014). Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. Journal of Catalysis, 309, 439-452. doi:10.1016/j.jcat.2013.10.003

Li, W., Cui, X., Zeng, R., Du, G., Sun, Z., Zheng, R., … Dou, S. X. (2015). Performance modulation of α-MnO2 nanowires by crystal facet engineering. Scientific Reports, 5(1). doi:10.1038/srep08987

Lume-Pereira, C., Baral, S., Henglein, A., & Janata, E. (1985). Chemistry of colloidal manganese dioxide. 1. Mechanism of reduction by an organic radical (a radiation chemical study). The Journal of Physical Chemistry, 89(26), 5772-5778. doi:10.1021/j100272a040

Sakai, N., Ebina, Y., Takada, K., & Sasaki, T. (2005). Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light. The Journal of Physical Chemistry B, 109(19), 9651-9655. doi:10.1021/jp0500485

Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852

Wang, W., Guo, S., Lee, I., Ahmed, K., Zhong, J., Favors, Z., … Ozkan, C. S. (2014). Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports, 4(1). doi:10.1038/srep04452

Park, K. C., Jang, I. Y., Wongwiriyapan, W., Morimoto, S., Kim, Y. J., Jung, Y. C., … Endo, M. (2010). Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. Journal of Materials Chemistry, 20(25), 5345. doi:10.1039/b923153f

Park, Y., Lee, B., Kim, C., Oh, Y., Nam, S., & Park, B. (2009). The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. Journal of Materials Research, 24(9), 2762-2766. doi:10.1557/jmr.2009.0331

Zhang, H., Li, W., Jin, Y., Sheng, W., Hu, M., Wang, X., & Zhang, J. (2016). Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 189, 56-64. doi:10.1016/j.apcatb.2016.02.030

Man, B., Zhang, H., Zhang, J., Li, X., Xu, N., Dai, H., … Dai, B. (2017). Oxidation modification of Ru-based catalyst for acetylene hydrochlorination. RSC Advances, 7(38), 23742-23750. doi:10.1039/c7ra01121k

Hernández, W. Y., Centeno, M. A., Ivanova, S., Eloy, P., Gaigneaux, E. M., & Odriozola, J. A. (2012). Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Applied Catalysis B: Environmental, 123-124, 27-35. doi:10.1016/j.apcatb.2012.04.024

Davó-Quiñonero, A., Navlani-García, M., Lozano-Castelló, D., & Bueno-López, A. (2016). CuO/cryptomelane catalyst for preferential oxidation of CO in the presence of H2: deactivation and regeneration. Catalysis Science & Technology, 6(14), 5684-5692. doi:10.1039/c6cy00329j

Sabaté, F., Navas, J., Sabater, M. J., & Corma, A. (2018). Synthesis of γ-lactones from easily and accessible reactants catalyzed by Cu–MnO x catalysts. Comptes Rendus Chimie, 21(3-4), 164-173. doi:10.1016/j.crci.2017.10.001

Wang, R., & Li, J. (2009). OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catalysis Letters, 131(3-4), 500-505. doi:10.1007/s10562-009-9939-5

Zhang, C., He, H., & Tanaka, K. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 65(1-2), 37-43. doi:10.1016/j.apcatb.2005.12.010

Kona, J. R., King’ondu, C. K., Howell, A. R., & Suib, S. L. (2014). OMS-2 for Aerobic, Catalytic, One-pot Alcohol Oxidation-Wittig Reactions: Efficient Access to α,β-Unsaturated Esters. ChemCatChem, 6(3), 749-752. doi:10.1002/cctc.201300942

Opembe, N. N., Guild, C., King’ondu, C., Nelson, N. C., Slowing, I. I., & Suib, S. L. (2014). Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide Octahedral Molecular Sieves (OMS-2). Industrial & Engineering Chemistry Research, 53(49), 19044-19051. doi:10.1021/ie5024639

Doménech-Carbó, A., Sabaté, F., & Sabater, M. J. (2018). Electrochemical Analysis of Catalytic and Oxygen Interfacial Transfer Effects on MnO2 Deposited on Gold Electrodes. The Journal of Physical Chemistry C, 122(20), 10939-10947. doi:10.1021/acs.jpcc.8b02684

Köckritz, A., Sebek, M., Dittmar, A., Radnik, J., Brückner, A., Bentrup, U., … Mägerlein, W. (2006). Ru-catalyzed oxidation of primary alcohols. Journal of Molecular Catalysis A: Chemical, 246(1-2), 85-99. doi:10.1016/j.molcata.2005.10.020

Kim, J. W., Koike, T., Kotani, M., Yamaguchi, K., & Mizuno, N. (2008). Synthetic Scope of Ru(OH)x/Al2O3-Catalyzed Hydrogen-Transfer Reactions: An Application to Reduction of Allylic Alcohols by a Sequential Process of Isomerization/Meerwein-Ponndorf-Verley-Type Reduction. Chemistry - A European Journal, 14(13), 4104-4109. doi:10.1002/chem.200701917

Liu, G., Liu, J., Li, W., Liu, C., Wang, F., He, J., … Suib, S. L. (2017). Aerobic oxidation of alcohols over Ru-Mn-Ce and Ru-Co-Ce catalysts: The effect of calcination temperature. Applied Catalysis A: General, 535, 77-84. doi:10.1016/j.apcata.2017.02.006

Chakravarty, A., Sengupta, D., Basu, B., Mukherjee, A., & De, G. (2015). MnO2 nanowires anchored on amine functionalized graphite nanosheets: highly active and reusable catalyst for organic oxidation reactions. RSC Advances, 5(112), 92585-92595. doi:10.1039/c5ra17777d

Cheng, S., Ma, X., Hu, Y., & Li, B. (2016). MnO2 /graphene oxide: A highly efficient catalyst for imine synthesis from alcohols and amines. Applied Organometallic Chemistry, 31(8), e3659. doi:10.1002/aoc.3659

Park, J.-H., Kang, D.-C., Park, S.-J., & Shin, C.-H. (2015). CO oxidation over MnO2 catalysts prepared by a simple redox method: Influence of the Mn (II) precursors. Journal of Industrial and Engineering Chemistry, 25, 250-257. doi:10.1016/j.jiec.2014.11.001

Fan, C., Lu, A., Li, Y., & Wang, C. (2008). Synthesis, characterization, and catalytic activity of cryptomelane nanomaterials produced with industrial manganese sulfate. Journal of Colloid and Interface Science, 327(2), 393-402. doi:10.1016/j.jcis.2008.08.015

Yang, Y., Su, X., Zhang, L., Kerns, P., Achola, L., Hayes, V., … He, J. (2019). Intercalating MnO 2 Nanosheets With Transition Metal Cations to Enhance Oxygen Evolution. ChemCatChem, 11(6), 1689-1700. doi:10.1002/cctc.201802019

Marún, C., Conde, L. D., & Suib, S. L. (1999). Catalytic Oligomerization of Methane via Microwave Heating. The Journal of Physical Chemistry A, 103(22), 4332-4340. doi:10.1021/jp984671j

Assal, M. E., Shaik, M. R., Kuniyil, M., Khan, M., Al-Warthan, A., Alharthi, A. I., … Adil, S. F. (2019). Ag2O nanoparticles/MnCO3, –MnO2 or –Mn2O3/highly reduced graphene oxide composites as an efficient and recyclable oxidation catalyst. Arabian Journal of Chemistry, 12(1), 54-68. doi:10.1016/j.arabjc.2018.03.021

Assal, M. E., Shaik, M. R., Kuniyil, M., Khan, M., Al-Warthan, A., Siddiqui, M. R. H., … Adil, S. F. (2017). A highly reduced graphene oxide/ZrOx–MnCO3 or –Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Advances, 7(87), 55336-55349. doi:10.1039/c7ra11569e

Jaiswal, G., Landge, V. G., Jagadeesan, D., & Balaraman, E. (2017). Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nature Communications, 8(1). doi:10.1038/s41467-017-01603-3

Gunanathan, C., & Milstein, D. (2014). Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chemical Reviews, 114(24), 12024-12087. doi:10.1021/cr5002782

Chen, J., Zhang, Q., Wang, Y., & Wan, H. (2008). Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Advanced Synthesis & Catalysis, 350(3), 453-464. doi:10.1002/adsc.200700350

Layek, K., Maheswaran, H., Arundhathi, R., Kantam, M. L., & Bhargava, S. K. (2011). Nanocrystalline Magnesium Oxide Stabilized Palladium(0): An Efficient Reusable Catalyst for Room Temperature Selective Aerobic Oxidation of Alcohols. Advanced Synthesis & Catalysis, 353(4), 606-616. doi:10.1002/adsc.201000591

Savara, A., Chan-Thaw, C. E., Rossetti, I., Villa, A., & Prati, L. (2014). Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem, 6(12), 3464-3473. doi:10.1002/cctc.201402552

Mitsudome, T., Noujima, A., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2009). Efficient Aerobic Oxidation of Alcohols using a Hydrotalcite-Supported Gold Nanoparticle Catalyst. Advanced Synthesis & Catalysis, 351(11-12), 1890-1896. doi:10.1002/adsc.200900239

Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2(12), 1138-1144. doi:10.1002/cssc.200900137

Boronat, M., Corma, A., Illas, F., Radilla, J., Ródenas, T., & Sabater, M. J. (2011). Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. Journal of Catalysis, 278(1), 50-58. doi:10.1016/j.jcat.2010.11.013

Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263

Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6

Yamaguchi, K., & Mizuno, N. (2003). Scope, Kinetics, and Mechanistic Aspects of Aerobic Oxidations Catalyzed by Ruthenium Supported on Alumina. Chemistry - A European Journal, 9(18), 4353-4361. doi:10.1002/chem.200304916

Peters, E. D., & Jungnickel, J. L. (1955). Improvement in Karl Fischer Method for Determination of Water. Analytical Chemistry, 27(3), 450-453. doi:10.1021/ac60099a041

M. Margreth , R.Schlink and A.Steinbach , Water Determination By Karl Fischer Titration, Analysis and Pharmaceutical Quality , Wiley Online Library , 2010

Son, Y.-C., Makwana, V. D., Howell, A. R., & Suib, S. L. (2001). Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves. Angewandte Chemie International Edition, 40(22), 4280-4283. doi:10.1002/1521-3773(20011119)40:22<4280::aid-anie4280>3.0.co;2-l

Ching, S., Krukowska, K. S., & Suib, S. L. (1999). A new synthetic route to todorokite-type manganese oxides. Inorganica Chimica Acta, 294(2), 123-132. doi:10.1016/s0020-1693(99)00208-x

Betancourt, P., Rives, A., Hubaut, R., Scott, C. ., & Goldwasser, J. (1998). A study of the ruthenium–alumina system. Applied Catalysis A: General, 170(2), 307-314. doi:10.1016/s0926-860x(98)00061-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem