- -

Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sabate-Fornons, Ferran es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Sabater Picot, Mª José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-07-30T03:31:03Z
dc.date.available 2021-07-30T03:31:03Z
dc.date.issued 2020-02-21 es_ES
dc.identifier.issn 2050-7488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170956
dc.description.abstract [EN] Ruthenium has been incorporated into the framework of the cryptomelane type manganese oxide K-OMS-2 ([Ru]-K-OMS2) and the presence of this element into the structure has been assessed by combining analytical and vibrational techniques such as ICP, UV-Vis, FT-IR and Raman spectroscopies, X-ray diffraction, electron microscopy (HR-TEM and SEM), TPR-H-2, and X-ray photoelectron spectroscopy. Rietveld refinement of the X-ray diffractogram has allowed to estimate changes in the values of cell parameters which were compatible with an isomorphic ruthenium substitution into the original structure. These calculations are in agreement with the observed increase in the interplanar spacing of (100) planes from 7.1 angstrom to 7.7 angstrom for the Ru-doped material. es_ES
dc.description.sponsorship Financial support by the European Union through ERC-AdG-2014-671093 (SynCatMatch), the Ministerio de Economia y Competitividad, Programa Severo Ochoa (SEV2016-0683) and Ministerio de Ciencia Innovacion y Universidades, Programa Estatal de Generacion de Conocimiento (PGC2018-101247-B-100) are gratefully acknowledged. F.S. thanks to Ministerio de Ciencia, Innovacion y Universidades for the economic support (Ayuda Predoctoral FPI - Severo Ochoa). The Electron Microscope of the Universitat Politecnica de Valencia is acknowledged for their help in the characterization of samples. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9ta11903e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101247-B-I00/ES/RECONOCIMIENTO MOLECULAR EN CATALIZADORES SOLIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Sabate-Fornons, F.; Jorda Moret, JL.; Sabater Picot, MJ.; Corma Canós, A. (2020). Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation. Journal of Materials Chemistry A. 8(7):3771-3784. https://doi.org/10.1039/c9ta11903e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9ta11903e es_ES
dc.description.upvformatpinicio 3771 es_ES
dc.description.upvformatpfin 3784 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\404302 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chen, H., Wang, Y., & Lv, Y.-K. (2016). Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Advances, 6(59), 54032-54040. doi:10.1039/c6ra10103h es_ES
dc.description.references Truong, T. T., Liu, Y., Ren, Y., Trahey, L., & Sun, Y. (2012). Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium–Air Batteries. ACS Nano, 6(9), 8067-8077. doi:10.1021/nn302654p es_ES
dc.description.references Huang, M., Zhang, Y., Li, F., Zhang, L., Ruoff, R. S., Wen, Z., & Liu, Q. (2014). Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 4(1). doi:10.1038/srep03878 es_ES
dc.description.references Ghodbane, O., Pascal, J.-L., Fraisse, B., & Favier, F. (2010). Structural in Situ Study of the Thermal Behavior of Manganese Dioxide Materials: Toward Selected Electrode Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2(12), 3493-3505. doi:10.1021/am100669k es_ES
dc.description.references New and Future Developments in Catalysis , ed. S.L. Suib , Elsevier , Amsterdam , 2013 , ISBN: 9780444538826 es_ES
dc.description.references Subramanian, N., Viswanathan, B., & Varadarajan, T. K. (2014). A facile, morphology-controlled synthesis of potassium-containing manganese oxide nanostructures for electrochemical supercapacitor application. RSC Adv., 4(64), 33911-33922. doi:10.1039/c4ra05227g es_ES
dc.description.references Peluso, M. A., Gambaro, L. A., Pronsato, E., Gazzoli, D., Thomas, H. J., & Sambeth, J. E. (2008). Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catalysis Today, 133-135, 487-492. doi:10.1016/j.cattod.2007.12.132 es_ES
dc.description.references Yin, H., Dai, X., Zhu, M., Li, F., Feng, X., & Liu, F. (2015). Fe-doped cryptomelane synthesized by refluxing at atmosphere: Structure, properties and photocatalytic degradation of phenol. Journal of Hazardous Materials, 296, 221-229. doi:10.1016/j.jhazmat.2015.04.055 es_ES
dc.description.references King’ondu, C. K., Opembe, N., Chen, C., Ngala, K., Huang, H., Iyer, A., … Suib, S. L. (2010). Manganese Oxide Octahedral Molecular Sieves (OMS-2) Multiple Framework Substitutions: A New Route to OMS-2 Particle Size and Morphology Control. Advanced Functional Materials, 21(2), 312-323. doi:10.1002/adfm.201001020 es_ES
dc.description.references DeGuzman, R. N., Shen, Y.-F., Neth, E. J., Suib, S. L., O’Young, C.-L., Levine, S., & Newsam, J. M. (1994). Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure. Chemistry of Materials, 6(6), 815-821. doi:10.1021/cm00042a019 es_ES
dc.description.references Ding, Y., Shen, X., Sithambaram, S., Gomez, S., Kumar, R., Crisostomo, V. M. B., … Aindow, M. (2005). Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method. Chemistry of Materials, 17(21), 5382-5389. doi:10.1021/cm051294w es_ES
dc.description.references Liu, L., Zhao, H., Andino, J. M., & Li, Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2(8), 1817-1828. doi:10.1021/cs300273q es_ES
dc.description.references Aldehydes and Ketones, Hamilton & Hardy's, Industrial Toxicology , ed. R. D. Harbison , M. M. Bourgeois and G. T. Johnson , John Wiley and Sons Inc. , 2015 , ISBN: 9780470929735 es_ES
dc.description.references Moro-oka, Y., Ueda, W., & Lee, K.-H. (2003). The role of bulk oxide ion in the catalytic oxidation reaction over metal oxide catalyst. Journal of Molecular Catalysis A: Chemical, 199(1-2), 139-148. doi:10.1016/s1381-1169(03)00030-x es_ES
dc.description.references Mars, P., & van Krevelen, D. W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, 3, 41-59. doi:10.1016/s0009-2509(54)80005-4 es_ES
dc.description.references Schurz, F., Bauchert, J. M., Merker, T., Schleid, T., Hasse, H., & Gläser, R. (2009). Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Applied Catalysis A: General, 355(1-2), 42-49. doi:10.1016/j.apcata.2008.11.014 es_ES
dc.description.references Makwana, V. (2002). The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst: A Kinetic and Isotope-Labeling Study. Journal of Catalysis, 210(1), 46-52. doi:10.1006/jcat.2002.3680 es_ES
dc.description.references Makwana, V. D., Garces, L. J., Liu, J., Cai, J., Son, Y.-C., & Suib, S. L. (2003). Selective oxidation of alcohols using octahedral molecular sieves: influence of synthesis method and property–activity relations. Catalysis Today, 85(2-4), 225-233. doi:10.1016/s0920-5861(03)00390-0 es_ES
dc.description.references Vicat, J., Fanchon, E., Strobel, P., & Tran Qui, D. (1986). The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallographica Section B Structural Science, 42(2), 162-167. doi:10.1107/s0108768186098415 es_ES
dc.description.references J. Carvajal , FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr , 1990 es_ES
dc.description.references Pahalagedara, L. R., Dharmarathna, S., King’ondu, C. K., Pahalagedara, M. N., Meng, Y.-T., Kuo, C.-H., & Suib, S. L. (2014). Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution. The Journal of Physical Chemistry C, 118(35), 20363-20373. doi:10.1021/jp505306q es_ES
dc.description.references Genuino, H. C., Meng, Y., Horvath, D. T., Kuo, C.-H., Seraji, M. S., Morey, A. M., … Suib, S. L. (2013). Enhancement of Catalytic Activities of Octahedral Molecular Sieve Manganese Oxide for Total and Preferential CO Oxidation through Vanadium Ion Framework Substitution. ChemCatChem, 5(8), 2306-2317. doi:10.1002/cctc.201300005 es_ES
dc.description.references Polverejan, M., Villegas, J. C., & Suib, S. L. (2004). Higher Valency Ion Substitution into the Manganese Oxide Framework. Journal of the American Chemical Society, 126(25), 7774-7775. doi:10.1021/ja048985y es_ES
dc.description.references L. Pauling , The Nature of the Chemical Bond , Cornell University Press , Ithaca, United States , 3rd edn, 1960 es_ES
dc.description.references Ahrens, L. H. (1952). The use of ionization potentials Part 1. Ionic radii of the elements. Geochimica et Cosmochimica Acta, 2(3), 155-169. doi:10.1016/0016-7037(52)90004-5 es_ES
dc.description.references Feng, Q., Kanoh, H., Miyai, Y., & Ooi, K. (1995). Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chemistry of Materials, 7(1), 148-153. doi:10.1021/cm00049a023 es_ES
dc.description.references Calvert, C., Joesten, R., Ngala, K., Villegas, J., Morey, A., Shen, X., & Suib, S. L. (2008). Synthesis, Characterization, and Rietveld Refinement of Tungsten-Framework-Doped Porous Manganese Oxide (K-OMS-2) Material. Chemistry of Materials, 20(20), 6382-6388. doi:10.1021/cm801146m es_ES
dc.description.references Luo, J., Zhang, Q., Garcia-Martinez, J., & Suib, S. L. (2008). Adsorptive and Acidic Properties, Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts. Journal of the American Chemical Society, 130(10), 3198-3207. doi:10.1021/ja077706e es_ES
dc.description.references Wu, X., Yu, X., Chen, Z., Huang, Z., & Jing, G. (2019). Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement. Catalysis Science & Technology, 9(15), 4108-4117. doi:10.1039/c9cy01016e es_ES
dc.description.references El-Sawy, A. M., King’ondu, C. K., Kuo, C.-H., Kriz, D. A., Guild, C. J., Meng, Y., … Suib, S. L. (2014). X-ray Absorption Spectroscopic Study of a Highly Thermally Stable Manganese Oxide Octahedral Molecular Sieve (OMS-2) with High Oxygen Reduction Reaction Activity. Chemistry of Materials, 26(19), 5752-5760. doi:10.1021/cm5028783 es_ES
dc.description.references Li, X., Ma, J., Jia, X., Xia, F., Huang, Y., Xu, Y., & Xu, J. (2018). Al-Doping Promoted Aerobic Amidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxamide over Cryptomelane. ACS Sustainable Chemistry & Engineering, 6(6), 8048-8054. doi:10.1021/acssuschemeng.8b01617 es_ES
dc.description.references Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvåg, H., & Norby, P. (2008). Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers. The Journal of Physical Chemistry C, 112(34), 13134-13140. doi:10.1021/jp804924f es_ES
dc.description.references Sultana, S., Ye, Z., Veerapandian, S. K. P., Löfberg, A., De Geyter, N., Morent, R., … Lamonier, J.-F. (2018). Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 307, 20-28. doi:10.1016/j.cattod.2017.05.078 es_ES
dc.description.references Korotcov, A. V., Huang, Y.-S., Tiong, K.-K., & Tsai, D.-S. (2007). Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals. Journal of Raman Spectroscopy, 38(6), 737-749. doi:10.1002/jrs.1655 es_ES
dc.description.references Hou, J., Li, Y., Liu, L., Ren, L., & Zhao, X. (2013). Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal of Materials Chemistry A, 1(23), 6736. doi:10.1039/c3ta11566f es_ES
dc.description.references Ousmane, M., Perrussel, G., Yan, Z., Clacens, J.-M., De Campo, F., & Pera-Titus, M. (2014). Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. Journal of Catalysis, 309, 439-452. doi:10.1016/j.jcat.2013.10.003 es_ES
dc.description.references Li, W., Cui, X., Zeng, R., Du, G., Sun, Z., Zheng, R., … Dou, S. X. (2015). Performance modulation of α-MnO2 nanowires by crystal facet engineering. Scientific Reports, 5(1). doi:10.1038/srep08987 es_ES
dc.description.references Lume-Pereira, C., Baral, S., Henglein, A., & Janata, E. (1985). Chemistry of colloidal manganese dioxide. 1. Mechanism of reduction by an organic radical (a radiation chemical study). The Journal of Physical Chemistry, 89(26), 5772-5778. doi:10.1021/j100272a040 es_ES
dc.description.references Sakai, N., Ebina, Y., Takada, K., & Sasaki, T. (2005). Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light. The Journal of Physical Chemistry B, 109(19), 9651-9655. doi:10.1021/jp0500485 es_ES
dc.description.references Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852 es_ES
dc.description.references Wang, W., Guo, S., Lee, I., Ahmed, K., Zhong, J., Favors, Z., … Ozkan, C. S. (2014). Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports, 4(1). doi:10.1038/srep04452 es_ES
dc.description.references Park, K. C., Jang, I. Y., Wongwiriyapan, W., Morimoto, S., Kim, Y. J., Jung, Y. C., … Endo, M. (2010). Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. Journal of Materials Chemistry, 20(25), 5345. doi:10.1039/b923153f es_ES
dc.description.references Park, Y., Lee, B., Kim, C., Oh, Y., Nam, S., & Park, B. (2009). The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. Journal of Materials Research, 24(9), 2762-2766. doi:10.1557/jmr.2009.0331 es_ES
dc.description.references Zhang, H., Li, W., Jin, Y., Sheng, W., Hu, M., Wang, X., & Zhang, J. (2016). Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 189, 56-64. doi:10.1016/j.apcatb.2016.02.030 es_ES
dc.description.references Man, B., Zhang, H., Zhang, J., Li, X., Xu, N., Dai, H., … Dai, B. (2017). Oxidation modification of Ru-based catalyst for acetylene hydrochlorination. RSC Advances, 7(38), 23742-23750. doi:10.1039/c7ra01121k es_ES
dc.description.references Hernández, W. Y., Centeno, M. A., Ivanova, S., Eloy, P., Gaigneaux, E. M., & Odriozola, J. A. (2012). Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Applied Catalysis B: Environmental, 123-124, 27-35. doi:10.1016/j.apcatb.2012.04.024 es_ES
dc.description.references Davó-Quiñonero, A., Navlani-García, M., Lozano-Castelló, D., & Bueno-López, A. (2016). CuO/cryptomelane catalyst for preferential oxidation of CO in the presence of H2: deactivation and regeneration. Catalysis Science & Technology, 6(14), 5684-5692. doi:10.1039/c6cy00329j es_ES
dc.description.references Sabaté, F., Navas, J., Sabater, M. J., & Corma, A. (2018). Synthesis of γ-lactones from easily and accessible reactants catalyzed by Cu–MnO x catalysts. Comptes Rendus Chimie, 21(3-4), 164-173. doi:10.1016/j.crci.2017.10.001 es_ES
dc.description.references Wang, R., & Li, J. (2009). OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catalysis Letters, 131(3-4), 500-505. doi:10.1007/s10562-009-9939-5 es_ES
dc.description.references Zhang, C., He, H., & Tanaka, K. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 65(1-2), 37-43. doi:10.1016/j.apcatb.2005.12.010 es_ES
dc.description.references Kona, J. R., King’ondu, C. K., Howell, A. R., & Suib, S. L. (2014). OMS-2 for Aerobic, Catalytic, One-pot Alcohol Oxidation-Wittig Reactions: Efficient Access to α,β-Unsaturated Esters. ChemCatChem, 6(3), 749-752. doi:10.1002/cctc.201300942 es_ES
dc.description.references Opembe, N. N., Guild, C., King’ondu, C., Nelson, N. C., Slowing, I. I., & Suib, S. L. (2014). Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide Octahedral Molecular Sieves (OMS-2). Industrial & Engineering Chemistry Research, 53(49), 19044-19051. doi:10.1021/ie5024639 es_ES
dc.description.references Doménech-Carbó, A., Sabaté, F., & Sabater, M. J. (2018). Electrochemical Analysis of Catalytic and Oxygen Interfacial Transfer Effects on MnO2 Deposited on Gold Electrodes. The Journal of Physical Chemistry C, 122(20), 10939-10947. doi:10.1021/acs.jpcc.8b02684 es_ES
dc.description.references Köckritz, A., Sebek, M., Dittmar, A., Radnik, J., Brückner, A., Bentrup, U., … Mägerlein, W. (2006). Ru-catalyzed oxidation of primary alcohols. Journal of Molecular Catalysis A: Chemical, 246(1-2), 85-99. doi:10.1016/j.molcata.2005.10.020 es_ES
dc.description.references Kim, J. W., Koike, T., Kotani, M., Yamaguchi, K., & Mizuno, N. (2008). Synthetic Scope of Ru(OH)x/Al2O3-Catalyzed Hydrogen-Transfer Reactions: An Application to Reduction of Allylic Alcohols by a Sequential Process of Isomerization/Meerwein-Ponndorf-Verley-Type Reduction. Chemistry - A European Journal, 14(13), 4104-4109. doi:10.1002/chem.200701917 es_ES
dc.description.references Liu, G., Liu, J., Li, W., Liu, C., Wang, F., He, J., … Suib, S. L. (2017). Aerobic oxidation of alcohols over Ru-Mn-Ce and Ru-Co-Ce catalysts: The effect of calcination temperature. Applied Catalysis A: General, 535, 77-84. doi:10.1016/j.apcata.2017.02.006 es_ES
dc.description.references Chakravarty, A., Sengupta, D., Basu, B., Mukherjee, A., & De, G. (2015). MnO2 nanowires anchored on amine functionalized graphite nanosheets: highly active and reusable catalyst for organic oxidation reactions. RSC Advances, 5(112), 92585-92595. doi:10.1039/c5ra17777d es_ES
dc.description.references Cheng, S., Ma, X., Hu, Y., & Li, B. (2016). MnO2 /graphene oxide: A highly efficient catalyst for imine synthesis from alcohols and amines. Applied Organometallic Chemistry, 31(8), e3659. doi:10.1002/aoc.3659 es_ES
dc.description.references Park, J.-H., Kang, D.-C., Park, S.-J., & Shin, C.-H. (2015). CO oxidation over MnO2 catalysts prepared by a simple redox method: Influence of the Mn (II) precursors. Journal of Industrial and Engineering Chemistry, 25, 250-257. doi:10.1016/j.jiec.2014.11.001 es_ES
dc.description.references Fan, C., Lu, A., Li, Y., & Wang, C. (2008). Synthesis, characterization, and catalytic activity of cryptomelane nanomaterials produced with industrial manganese sulfate. Journal of Colloid and Interface Science, 327(2), 393-402. doi:10.1016/j.jcis.2008.08.015 es_ES
dc.description.references Yang, Y., Su, X., Zhang, L., Kerns, P., Achola, L., Hayes, V., … He, J. (2019). Intercalating MnO 2 Nanosheets With Transition Metal Cations to Enhance Oxygen Evolution. ChemCatChem, 11(6), 1689-1700. doi:10.1002/cctc.201802019 es_ES
dc.description.references Marún, C., Conde, L. D., & Suib, S. L. (1999). Catalytic Oligomerization of Methane via Microwave Heating. The Journal of Physical Chemistry A, 103(22), 4332-4340. doi:10.1021/jp984671j es_ES
dc.description.references Assal, M. E., Shaik, M. R., Kuniyil, M., Khan, M., Al-Warthan, A., Alharthi, A. I., … Adil, S. F. (2019). Ag2O nanoparticles/MnCO3, –MnO2 or –Mn2O3/highly reduced graphene oxide composites as an efficient and recyclable oxidation catalyst. Arabian Journal of Chemistry, 12(1), 54-68. doi:10.1016/j.arabjc.2018.03.021 es_ES
dc.description.references Assal, M. E., Shaik, M. R., Kuniyil, M., Khan, M., Al-Warthan, A., Siddiqui, M. R. H., … Adil, S. F. (2017). A highly reduced graphene oxide/ZrOx–MnCO3 or –Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Advances, 7(87), 55336-55349. doi:10.1039/c7ra11569e es_ES
dc.description.references Jaiswal, G., Landge, V. G., Jagadeesan, D., & Balaraman, E. (2017). Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nature Communications, 8(1). doi:10.1038/s41467-017-01603-3 es_ES
dc.description.references Gunanathan, C., & Milstein, D. (2014). Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chemical Reviews, 114(24), 12024-12087. doi:10.1021/cr5002782 es_ES
dc.description.references Chen, J., Zhang, Q., Wang, Y., & Wan, H. (2008). Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Advanced Synthesis & Catalysis, 350(3), 453-464. doi:10.1002/adsc.200700350 es_ES
dc.description.references Layek, K., Maheswaran, H., Arundhathi, R., Kantam, M. L., & Bhargava, S. K. (2011). Nanocrystalline Magnesium Oxide Stabilized Palladium(0): An Efficient Reusable Catalyst for Room Temperature Selective Aerobic Oxidation of Alcohols. Advanced Synthesis & Catalysis, 353(4), 606-616. doi:10.1002/adsc.201000591 es_ES
dc.description.references Savara, A., Chan-Thaw, C. E., Rossetti, I., Villa, A., & Prati, L. (2014). Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem, 6(12), 3464-3473. doi:10.1002/cctc.201402552 es_ES
dc.description.references Mitsudome, T., Noujima, A., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2009). Efficient Aerobic Oxidation of Alcohols using a Hydrotalcite-Supported Gold Nanoparticle Catalyst. Advanced Synthesis & Catalysis, 351(11-12), 1890-1896. doi:10.1002/adsc.200900239 es_ES
dc.description.references Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2(12), 1138-1144. doi:10.1002/cssc.200900137 es_ES
dc.description.references Boronat, M., Corma, A., Illas, F., Radilla, J., Ródenas, T., & Sabater, M. J. (2011). Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. Journal of Catalysis, 278(1), 50-58. doi:10.1016/j.jcat.2010.11.013 es_ES
dc.description.references Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263 es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6 es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2003). Scope, Kinetics, and Mechanistic Aspects of Aerobic Oxidations Catalyzed by Ruthenium Supported on Alumina. Chemistry - A European Journal, 9(18), 4353-4361. doi:10.1002/chem.200304916 es_ES
dc.description.references Peters, E. D., & Jungnickel, J. L. (1955). Improvement in Karl Fischer Method for Determination of Water. Analytical Chemistry, 27(3), 450-453. doi:10.1021/ac60099a041 es_ES
dc.description.references M. Margreth , R.Schlink and A.Steinbach , Water Determination By Karl Fischer Titration, Analysis and Pharmaceutical Quality , Wiley Online Library , 2010 es_ES
dc.description.references Son, Y.-C., Makwana, V. D., Howell, A. R., & Suib, S. L. (2001). Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves. Angewandte Chemie International Edition, 40(22), 4280-4283. doi:10.1002/1521-3773(20011119)40:22<4280::aid-anie4280>3.0.co;2-l es_ES
dc.description.references Ching, S., Krukowska, K. S., & Suib, S. L. (1999). A new synthetic route to todorokite-type manganese oxides. Inorganica Chimica Acta, 294(2), 123-132. doi:10.1016/s0020-1693(99)00208-x es_ES
dc.description.references Betancourt, P., Rives, A., Hubaut, R., Scott, C. ., & Goldwasser, J. (1998). A study of the ruthenium–alumina system. Applied Catalysis A: General, 170(2), 307-314. doi:10.1016/s0926-860x(98)00061-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem