- -

Synthesis of metal-free lightweight materials with sequence-encoded properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of metal-free lightweight materials with sequence-encoded properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Azoulay, Adi es_ES
dc.contributor.author Barrio, Jesús es_ES
dc.contributor.author Tzadikov, Jonathan es_ES
dc.contributor.author Volokh, Michael es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Gervais, Christel es_ES
dc.contributor.author Amo-Ochoa, Pilar es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Zamora, Félix es_ES
dc.contributor.author Shalom, Menny es_ES
dc.date.accessioned 2021-07-30T03:31:09Z
dc.date.available 2021-07-30T03:31:09Z
dc.date.issued 2020-05-07 es_ES
dc.identifier.issn 2050-7488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170959
dc.description.abstract [EN] A high-temperature solid-state synthesis is a widespread tool for the construction of metal-free materials, owing to its simplicity and scalability. However, no method is currently available for the synthesis of metal-free materials, which enables control over the atomic ratio and spatial organization of several heteroatoms. Here we report a general and large-scale synthesis of phosphorus-nitrogen-carbon (PNC) materials with highly controllable elemental composition and structural, electronic, and thermal stability properties. To do so, we designed four different crystals consisting of melamine and phosphoric acid with different monomers sequences as the starting precursors. The monomer sequence of the crystals is preserved upon calcination (up to 800 degrees C) to an unprecedented degree, which leads to precise control over the composition of the final PNC materials. The latter exhibit a remarkable stability up to 970 degrees C in air, positioning them as sustainable, lightweight supports for catalysts in high-temperature reactions as well as halogen-free fire-retardant materials. es_ES
dc.description.sponsorship The authors would like to thank Dr Volodiya Ezersky, Dr Natalya Froumin, Dr Anna Milionshchik, Dr Radion Vainer, Dr Einat Nativ-Roth, and Mr Nitzan Shauloff for analytical HRTEM, XPS, TGA, SC-XRD, HRSEM, and technical support, respectively. This research was partly funded by the following: the Planning & Budgeting Committee/Israel Council for Higher Education (CHE) and Fuel Choice Initiative (Prime Minister Office of Israel), within the framework of "Israel National Research Center for Electrochemical Propulsion" (INREP); the Minerva Center No. 117873; the Spanish Ministerio de Economia y Competitividad (MAT2016-77608-C3-1-P, MAT2016-75883-C2-2-P); J. A. and H. G. also gratefully acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. [849068]). NMR spectroscopic calculations were performed using HPC resources from GENCI-IDRIS (Grant 097535). The French Region Ile de France-SESAME program is acknowledged for financial support (700 MHz spectrometer). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//RTI2018-89023-CO2-R1 es_ES
dc.relation.ispartof Journal of Materials Chemistry A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of metal-free lightweight materials with sequence-encoded properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0ta03162c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/849068/EU/Controlled Growth of Lightweight Metal-Free Materials for Photoelectrochemical Cells/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-77608-C3-1-P/ES/MATERIALES BIDIMENSIONALES CON PROPIEDADES MODULABLES II/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75883-C2-2-P/ES/MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON COMPORTAMIENTO ESTIMULO-RESPUESTA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNRS//097535/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/HUJI//117873/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Azoulay, A.; Barrio, J.; Tzadikov, J.; Volokh, M.; Albero-Sancho, J.; Gervais, C.; Amo-Ochoa, P.... (2020). Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A. 8(17):8752-8760. https://doi.org/10.1039/d0ta03162c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0ta03162c es_ES
dc.description.upvformatpinicio 8752 es_ES
dc.description.upvformatpfin 8760 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\432556 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Region Ile-de-France es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Hebrew University of Jerusalem es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministry of Science and Technology, Israel es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Israel National Research Center for Electrochemical Propulsion es_ES
dc.contributor.funder Planning and Budgeting Committee of the Council for Higher Education of Israel es_ES
dc.description.references Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. doi:10.1039/c3ee41444b es_ES
dc.description.references Gates, D. P. (2003). Chemistry and Applications of Polyphosphazenes. By Harry R. Allcock. Angewandte Chemie International Edition, 42(38), 4570-4570. doi:10.1002/anie.200385981 es_ES
dc.description.references Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F., … Terrones, M. (2008). Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorus−Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2(3), 441-448. doi:10.1021/nn700330w es_ES
dc.description.references Zhang, W., Barrio, J., Gervais, C., Kocjan, A., Yu, A., Wang, X., & Shalom, M. (2018). Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material. Angewandte Chemie International Edition, 57(31), 9764-9769. doi:10.1002/anie.201805279 es_ES
dc.description.references Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B., & Wurm, F. R. (2018). Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie International Edition, 57(33), 10450-10467. doi:10.1002/anie.201711735 es_ES
dc.description.references Li, C., Chen, Z., Kong, A., Ni, Y., Kong, F., & Shan, Y. (2018). High-rate oxygen electroreduction over metal-free graphene foams embedding P–N coupled moieties in acidic media. Journal of Materials Chemistry A, 6(9), 4145-4151. doi:10.1039/c7ta08186c es_ES
dc.description.references Chaplin, A. B., Harrison, J. A., & Dyson, P. J. (2005). Revisiting the Electronic Structure of Phosphazenes. Inorganic Chemistry, 44(23), 8407-8417. doi:10.1021/ic0511266 es_ES
dc.description.references Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., & Fu, H. (2015). Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 55(5), 1830-1834. doi:10.1002/anie.201508505 es_ES
dc.description.references Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., … Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H 2 evolution. International Journal of Hydrogen Energy, 39(28), 15373-15379. doi:10.1016/j.ijhydene.2014.07.160 es_ES
dc.description.references Barrio, J., Lin, L., Amo-Ochoa, P., Tzadikov, J., Peng, G., Sun, J., … Shalom, M. (2018). Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 14(21), 1800633. doi:10.1002/smll.201800633 es_ES
dc.description.references Faul, C. F. J., & Antonietti, M. (2003). Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Advanced Materials, 15(9), 673-683. doi:10.1002/adma.200300379 es_ES
dc.description.references Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410 es_ES
dc.description.references De Ridder, D. J. A., Goubitz, K., Brodski, V., Peschar, R., & Schenk, H. (2004). Crystal Structure of Melaminium Orthophosphate from High-Resolution Synchrotron Powder-Diffraction Data. Helvetica Chimica Acta, 87(7), 1894-1905. doi:10.1002/hlca.200490168 es_ES
dc.description.references Li, X.-M., Feng, S.-S., Wang, F., Ma, Q., & Zhu, M.-L. (2009). Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate. Acta Crystallographica Section E Structure Reports Online, 66(1), o239-o240. doi:10.1107/s1600536809054798 es_ES
dc.description.references Jürgens, B., Irran, E., Senker, J., Kroll, P., Müller, H., & Schnick, W. (2003). Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society, 125(34), 10288-10300. doi:10.1021/ja0357689 es_ES
dc.description.references Barrio, J., Grafmüller, A., Tzadikov, J., & Shalom, M. (2018). Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Applied Catalysis B: Environmental, 237, 681-688. doi:10.1016/j.apcatb.2018.06.043 es_ES
dc.description.references Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. doi:10.1007/s10853-005-2096-3 es_ES
dc.description.references Naik, A. D., Fontaine, G., Samyn, F., Delva, X., Louisy, J., Bellayer, S., … Bourbigot, S. (2014). Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Safety Journal, 70, 46-60. doi:10.1016/j.firesaf.2014.08.019 es_ES
dc.description.references Guo, M., Huang, J., Kong, X., Peng, H., Shui, H., Qian, F., … Zhang, Q. (2016). Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Materials, 31(3), 352-362. doi:10.1016/s1872-5805(16)60019-7 es_ES
dc.description.references Wu, J., Yang, S., Li, J., Yang, Y., Wang, G., Bu, X., … Xie, X. (2016). Electron Injection of Phosphorus Doped g-C3N4Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 4(12), 2095-2101. doi:10.1002/adom.201600570 es_ES
dc.description.references Fukushima, A., Hayashi, A., Yamamura, H., & Tatsumisago, M. (2017). Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics, 304, 85-89. doi:10.1016/j.ssi.2017.03.010 es_ES
dc.description.references Xie, M., Tang, J., Kong, L., Lu, W., Natarajan, V., Zhu, F., & Zhan, J. (2019). Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal, 360, 1213-1222. doi:10.1016/j.cej.2018.10.130 es_ES
dc.description.references Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135 es_ES
dc.description.references Wulff, G., Schmidt, H., & Zhu, L. (1999). Generating hydrophilic surfaces on standard polymers after copolymerization with low amounts of protected vinyl sugars. Macromolecular Chemistry and Physics, 200(4), 774-782. doi:10.1002/(sici)1521-3935(19990401)200:4<774::aid-macp774>3.0.co;2-j es_ES
dc.description.references Xu, J., Zhang, L., Shi, R., & Zhu, Y. (2013). Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 1(46), 14766. doi:10.1039/c3ta13188b es_ES
dc.description.references Kulkarni, G. U., Laruelle, S., & Roberts, M. W. (1996). The oxygen state active in the catalytic oxidation of carbon monoxide at a caesium surface: isolation of the reactive anionic CO2δ–species. Chem. Commun., (1), 9-10. doi:10.1039/cc9960000009 es_ES
dc.description.references Wang, L., Wang, C., Hu, X., Xue, H., & Pang, H. (2016). Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - An Asian Journal, 11(23), 3305-3328. doi:10.1002/asia.201601178 es_ES
dc.description.references Barrio, J., Mateo, D., Albero, J., García, H., & Shalom, M. (2019). A Heterogeneous Carbon Nitride–Nickel Photocatalyst for Efficient Low‐Temperature CO 2 Methanation. Advanced Energy Materials, 9(44), 1902738. doi:10.1002/aenm.201902738 es_ES
dc.description.references Alrafei, B., Polaert, I., Ledoux, A., & Azzolina-Jury, F. (2020). Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today, 346, 23-33. doi:10.1016/j.cattod.2019.03.026 es_ES
dc.description.references Yang Lim, J., McGregor, J., Sederman, A. J., & Dennis, J. S. (2016). Kinetic studies of CO 2 methanation over a Ni/ γ -Al 2 O 3 catalyst using a batch reactor. Chemical Engineering Science, 141, 28-45. doi:10.1016/j.ces.2015.10.026 es_ES
dc.description.references Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 es_ES
dc.description.references Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 es_ES
dc.description.references Sheldrick, G. M. (2015). SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), 3-8. doi:10.1107/s2053273314026370 es_ES
dc.description.references Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 es_ES
dc.description.references Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 es_ES
dc.description.references Pack, J. D., & Monkhorst, H. J. (1977). «Special points for Brillouin-zone integrations»—a reply. Physical Review B, 16(4), 1748-1749. doi:10.1103/physrevb.16.1748 es_ES
dc.description.references Blöchl, P. E., Jepsen, O., & Andersen, O. K. (1994). Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23), 16223-16233. doi:10.1103/physrevb.49.16223 es_ES
dc.description.references Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. doi:10.1103/physrevb.43.1993 es_ES
dc.description.references Kleinman, L., & Bylander, D. M. (1982). Efficacious Form for Model Pseudopotentials. Physical Review Letters, 48(20), 1425-1428. doi:10.1103/physrevlett.48.1425 es_ES
dc.description.references Pickard, C. J., & Mauri, F. (2001). All-electron magnetic response with pseudopotentials: NMR chemical shifts. Physical Review B, 63(24). doi:10.1103/physrevb.63.245101 es_ES
dc.description.references Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., … Dal Corso, A. (2016). Reproducibility in density functional theory calculations of solids. Science, 351(6280). doi:10.1126/science.aad3000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem