Mostrar el registro sencillo del ítem
dc.contributor.author | Azoulay, Adi | es_ES |
dc.contributor.author | Barrio, Jesús | es_ES |
dc.contributor.author | Tzadikov, Jonathan | es_ES |
dc.contributor.author | Volokh, Michael | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | Gervais, Christel | es_ES |
dc.contributor.author | Amo-Ochoa, Pilar | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Zamora, Félix | es_ES |
dc.contributor.author | Shalom, Menny | es_ES |
dc.date.accessioned | 2021-07-30T03:31:09Z | |
dc.date.available | 2021-07-30T03:31:09Z | |
dc.date.issued | 2020-05-07 | es_ES |
dc.identifier.issn | 2050-7488 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170959 | |
dc.description.abstract | [EN] A high-temperature solid-state synthesis is a widespread tool for the construction of metal-free materials, owing to its simplicity and scalability. However, no method is currently available for the synthesis of metal-free materials, which enables control over the atomic ratio and spatial organization of several heteroatoms. Here we report a general and large-scale synthesis of phosphorus-nitrogen-carbon (PNC) materials with highly controllable elemental composition and structural, electronic, and thermal stability properties. To do so, we designed four different crystals consisting of melamine and phosphoric acid with different monomers sequences as the starting precursors. The monomer sequence of the crystals is preserved upon calcination (up to 800 degrees C) to an unprecedented degree, which leads to precise control over the composition of the final PNC materials. The latter exhibit a remarkable stability up to 970 degrees C in air, positioning them as sustainable, lightweight supports for catalysts in high-temperature reactions as well as halogen-free fire-retardant materials. | es_ES |
dc.description.sponsorship | The authors would like to thank Dr Volodiya Ezersky, Dr Natalya Froumin, Dr Anna Milionshchik, Dr Radion Vainer, Dr Einat Nativ-Roth, and Mr Nitzan Shauloff for analytical HRTEM, XPS, TGA, SC-XRD, HRSEM, and technical support, respectively. This research was partly funded by the following: the Planning & Budgeting Committee/Israel Council for Higher Education (CHE) and Fuel Choice Initiative (Prime Minister Office of Israel), within the framework of "Israel National Research Center for Electrochemical Propulsion" (INREP); the Minerva Center No. 117873; the Spanish Ministerio de Economia y Competitividad (MAT2016-77608-C3-1-P, MAT2016-75883-C2-2-P); J. A. and H. G. also gratefully acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. [849068]). NMR spectroscopic calculations were performed using HPC resources from GENCI-IDRIS (Grant 097535). The French Region Ile de France-SESAME program is acknowledged for financial support (700 MHz spectrometer). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO//RTI2018-89023-CO2-R1 | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Synthesis of metal-free lightweight materials with sequence-encoded properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0ta03162c | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/849068/EU/Controlled Growth of Lightweight Metal-Free Materials for Photoelectrochemical Cells/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-77608-C3-1-P/ES/MATERIALES BIDIMENSIONALES CON PROPIEDADES MODULABLES II/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75883-C2-2-P/ES/MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON COMPORTAMIENTO ESTIMULO-RESPUESTA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNRS//097535/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/HUJI//117873/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Azoulay, A.; Barrio, J.; Tzadikov, J.; Volokh, M.; Albero-Sancho, J.; Gervais, C.; Amo-Ochoa, P.... (2020). Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A. 8(17):8752-8760. https://doi.org/10.1039/d0ta03162c | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0ta03162c | es_ES |
dc.description.upvformatpinicio | 8752 | es_ES |
dc.description.upvformatpfin | 8760 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.pasarela | S\432556 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Region Ile-de-France | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Hebrew University of Jerusalem | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministry of Science and Technology, Israel | es_ES |
dc.contributor.funder | Centre National de la Recherche Scientifique, Francia | es_ES |
dc.contributor.funder | Israel National Research Center for Electrochemical Propulsion | es_ES |
dc.contributor.funder | Planning and Budgeting Committee of the Council for Higher Education of Israel | es_ES |
dc.description.references | Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. doi:10.1039/c3ee41444b | es_ES |
dc.description.references | Gates, D. P. (2003). Chemistry and Applications of Polyphosphazenes. By Harry R. Allcock. Angewandte Chemie International Edition, 42(38), 4570-4570. doi:10.1002/anie.200385981 | es_ES |
dc.description.references | Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F., … Terrones, M. (2008). Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorus−Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2(3), 441-448. doi:10.1021/nn700330w | es_ES |
dc.description.references | Zhang, W., Barrio, J., Gervais, C., Kocjan, A., Yu, A., Wang, X., & Shalom, M. (2018). Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material. Angewandte Chemie International Edition, 57(31), 9764-9769. doi:10.1002/anie.201805279 | es_ES |
dc.description.references | Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B., & Wurm, F. R. (2018). Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie International Edition, 57(33), 10450-10467. doi:10.1002/anie.201711735 | es_ES |
dc.description.references | Li, C., Chen, Z., Kong, A., Ni, Y., Kong, F., & Shan, Y. (2018). High-rate oxygen electroreduction over metal-free graphene foams embedding P–N coupled moieties in acidic media. Journal of Materials Chemistry A, 6(9), 4145-4151. doi:10.1039/c7ta08186c | es_ES |
dc.description.references | Chaplin, A. B., Harrison, J. A., & Dyson, P. J. (2005). Revisiting the Electronic Structure of Phosphazenes. Inorganic Chemistry, 44(23), 8407-8417. doi:10.1021/ic0511266 | es_ES |
dc.description.references | Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., & Fu, H. (2015). Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 55(5), 1830-1834. doi:10.1002/anie.201508505 | es_ES |
dc.description.references | Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., … Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H 2 evolution. International Journal of Hydrogen Energy, 39(28), 15373-15379. doi:10.1016/j.ijhydene.2014.07.160 | es_ES |
dc.description.references | Barrio, J., Lin, L., Amo-Ochoa, P., Tzadikov, J., Peng, G., Sun, J., … Shalom, M. (2018). Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 14(21), 1800633. doi:10.1002/smll.201800633 | es_ES |
dc.description.references | Faul, C. F. J., & Antonietti, M. (2003). Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Advanced Materials, 15(9), 673-683. doi:10.1002/adma.200300379 | es_ES |
dc.description.references | Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410 | es_ES |
dc.description.references | De Ridder, D. J. A., Goubitz, K., Brodski, V., Peschar, R., & Schenk, H. (2004). Crystal Structure of Melaminium Orthophosphate from High-Resolution Synchrotron Powder-Diffraction Data. Helvetica Chimica Acta, 87(7), 1894-1905. doi:10.1002/hlca.200490168 | es_ES |
dc.description.references | Li, X.-M., Feng, S.-S., Wang, F., Ma, Q., & Zhu, M.-L. (2009). Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate. Acta Crystallographica Section E Structure Reports Online, 66(1), o239-o240. doi:10.1107/s1600536809054798 | es_ES |
dc.description.references | Jürgens, B., Irran, E., Senker, J., Kroll, P., Müller, H., & Schnick, W. (2003). Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society, 125(34), 10288-10300. doi:10.1021/ja0357689 | es_ES |
dc.description.references | Barrio, J., Grafmüller, A., Tzadikov, J., & Shalom, M. (2018). Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Applied Catalysis B: Environmental, 237, 681-688. doi:10.1016/j.apcatb.2018.06.043 | es_ES |
dc.description.references | Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. doi:10.1007/s10853-005-2096-3 | es_ES |
dc.description.references | Naik, A. D., Fontaine, G., Samyn, F., Delva, X., Louisy, J., Bellayer, S., … Bourbigot, S. (2014). Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Safety Journal, 70, 46-60. doi:10.1016/j.firesaf.2014.08.019 | es_ES |
dc.description.references | Guo, M., Huang, J., Kong, X., Peng, H., Shui, H., Qian, F., … Zhang, Q. (2016). Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Materials, 31(3), 352-362. doi:10.1016/s1872-5805(16)60019-7 | es_ES |
dc.description.references | Wu, J., Yang, S., Li, J., Yang, Y., Wang, G., Bu, X., … Xie, X. (2016). Electron Injection of Phosphorus Doped g-C3N4Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 4(12), 2095-2101. doi:10.1002/adom.201600570 | es_ES |
dc.description.references | Fukushima, A., Hayashi, A., Yamamura, H., & Tatsumisago, M. (2017). Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics, 304, 85-89. doi:10.1016/j.ssi.2017.03.010 | es_ES |
dc.description.references | Xie, M., Tang, J., Kong, L., Lu, W., Natarajan, V., Zhu, F., & Zhan, J. (2019). Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal, 360, 1213-1222. doi:10.1016/j.cej.2018.10.130 | es_ES |
dc.description.references | Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135 | es_ES |
dc.description.references | Wulff, G., Schmidt, H., & Zhu, L. (1999). Generating hydrophilic surfaces on standard polymers after copolymerization with low amounts of protected vinyl sugars. Macromolecular Chemistry and Physics, 200(4), 774-782. doi:10.1002/(sici)1521-3935(19990401)200:4<774::aid-macp774>3.0.co;2-j | es_ES |
dc.description.references | Xu, J., Zhang, L., Shi, R., & Zhu, Y. (2013). Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 1(46), 14766. doi:10.1039/c3ta13188b | es_ES |
dc.description.references | Kulkarni, G. U., Laruelle, S., & Roberts, M. W. (1996). The oxygen state active in the catalytic oxidation of carbon monoxide at a caesium surface: isolation of the reactive anionic CO2δ–species. Chem. Commun., (1), 9-10. doi:10.1039/cc9960000009 | es_ES |
dc.description.references | Wang, L., Wang, C., Hu, X., Xue, H., & Pang, H. (2016). Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - An Asian Journal, 11(23), 3305-3328. doi:10.1002/asia.201601178 | es_ES |
dc.description.references | Barrio, J., Mateo, D., Albero, J., García, H., & Shalom, M. (2019). A Heterogeneous Carbon Nitride–Nickel Photocatalyst for Efficient Low‐Temperature CO 2 Methanation. Advanced Energy Materials, 9(44), 1902738. doi:10.1002/aenm.201902738 | es_ES |
dc.description.references | Alrafei, B., Polaert, I., Ledoux, A., & Azzolina-Jury, F. (2020). Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today, 346, 23-33. doi:10.1016/j.cattod.2019.03.026 | es_ES |
dc.description.references | Yang Lim, J., McGregor, J., Sederman, A. J., & Dennis, J. S. (2016). Kinetic studies of CO 2 methanation over a Ni/ γ -Al 2 O 3 catalyst using a batch reactor. Chemical Engineering Science, 141, 28-45. doi:10.1016/j.ces.2015.10.026 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 | es_ES |
dc.description.references | Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 | es_ES |
dc.description.references | Sheldrick, G. M. (2015). SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), 3-8. doi:10.1107/s2053273314026370 | es_ES |
dc.description.references | Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 | es_ES |
dc.description.references | Pack, J. D., & Monkhorst, H. J. (1977). «Special points for Brillouin-zone integrations»—a reply. Physical Review B, 16(4), 1748-1749. doi:10.1103/physrevb.16.1748 | es_ES |
dc.description.references | Blöchl, P. E., Jepsen, O., & Andersen, O. K. (1994). Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23), 16223-16233. doi:10.1103/physrevb.49.16223 | es_ES |
dc.description.references | Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. doi:10.1103/physrevb.43.1993 | es_ES |
dc.description.references | Kleinman, L., & Bylander, D. M. (1982). Efficacious Form for Model Pseudopotentials. Physical Review Letters, 48(20), 1425-1428. doi:10.1103/physrevlett.48.1425 | es_ES |
dc.description.references | Pickard, C. J., & Mauri, F. (2001). All-electron magnetic response with pseudopotentials: NMR chemical shifts. Physical Review B, 63(24). doi:10.1103/physrevb.63.245101 | es_ES |
dc.description.references | Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., … Dal Corso, A. (2016). Reproducibility in density functional theory calculations of solids. Science, 351(6280). doi:10.1126/science.aad3000 | es_ES |