- -

Synthesis of metal-free lightweight materials with sequence-encoded properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of metal-free lightweight materials with sequence-encoded properties

Mostrar el registro completo del ítem

Azoulay, A.; Barrio, J.; Tzadikov, J.; Volokh, M.; Albero-Sancho, J.; Gervais, C.; Amo-Ochoa, P.... (2020). Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A. 8(17):8752-8760. https://doi.org/10.1039/d0ta03162c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170959

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of metal-free lightweight materials with sequence-encoded properties
Autor: Azoulay, Adi Barrio, Jesús Tzadikov, Jonathan Volokh, Michael Albero-Sancho, Josep Gervais, Christel Amo-Ochoa, Pilar García Gómez, Hermenegildo Zamora, Félix Shalom, Menny
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A high-temperature solid-state synthesis is a widespread tool for the construction of metal-free materials, owing to its simplicity and scalability. However, no method is currently available for the synthesis of ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry A. (issn: 2050-7488 )
DOI: 10.1039/d0ta03162c
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0ta03162c
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/849068/EU/Controlled Growth of Lightweight Metal-Free Materials for Photoelectrochemical Cells/
info:eu-repo/grantAgreement/MINECO//RTI2018-89023-CO2-R1
...[+]
info:eu-repo/grantAgreement/EC/H2020/849068/EU/Controlled Growth of Lightweight Metal-Free Materials for Photoelectrochemical Cells/
info:eu-repo/grantAgreement/MINECO//MAT2016-77608-C3-1-P/ES/MATERIALES BIDIMENSIONALES CON PROPIEDADES MODULABLES II/
info:eu-repo/grantAgreement/MINECO//MAT2016-75883-C2-2-P/ES/MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON COMPORTAMIENTO ESTIMULO-RESPUESTA/
info:eu-repo/grantAgreement/CNRS//097535/
info:eu-repo/grantAgreement/HUJI//117873/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
info:eu-repo/grantAgreement/MINECO//RTI2018-89023-CO2-R1
[-]
Agradecimientos:
The authors would like to thank Dr Volodiya Ezersky, Dr Natalya Froumin, Dr Anna Milionshchik, Dr Radion Vainer, Dr Einat Nativ-Roth, and Mr Nitzan Shauloff for analytical HRTEM, XPS, TGA, SC-XRD, HRSEM, and technical ...[+]
Tipo: Artículo

References

Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. doi:10.1039/c3ee41444b

Gates, D. P. (2003). Chemistry and Applications of Polyphosphazenes. By Harry R. Allcock. Angewandte Chemie International Edition, 42(38), 4570-4570. doi:10.1002/anie.200385981

Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F., … Terrones, M. (2008). Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorus−Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2(3), 441-448. doi:10.1021/nn700330w [+]
Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. doi:10.1039/c3ee41444b

Gates, D. P. (2003). Chemistry and Applications of Polyphosphazenes. By Harry R. Allcock. Angewandte Chemie International Edition, 42(38), 4570-4570. doi:10.1002/anie.200385981

Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F., … Terrones, M. (2008). Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorus−Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2(3), 441-448. doi:10.1021/nn700330w

Zhang, W., Barrio, J., Gervais, C., Kocjan, A., Yu, A., Wang, X., & Shalom, M. (2018). Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material. Angewandte Chemie International Edition, 57(31), 9764-9769. doi:10.1002/anie.201805279

Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B., & Wurm, F. R. (2018). Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie International Edition, 57(33), 10450-10467. doi:10.1002/anie.201711735

Li, C., Chen, Z., Kong, A., Ni, Y., Kong, F., & Shan, Y. (2018). High-rate oxygen electroreduction over metal-free graphene foams embedding P–N coupled moieties in acidic media. Journal of Materials Chemistry A, 6(9), 4145-4151. doi:10.1039/c7ta08186c

Chaplin, A. B., Harrison, J. A., & Dyson, P. J. (2005). Revisiting the Electronic Structure of Phosphazenes. Inorganic Chemistry, 44(23), 8407-8417. doi:10.1021/ic0511266

Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., & Fu, H. (2015). Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 55(5), 1830-1834. doi:10.1002/anie.201508505

Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., … Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H 2 evolution. International Journal of Hydrogen Energy, 39(28), 15373-15379. doi:10.1016/j.ijhydene.2014.07.160

Barrio, J., Lin, L., Amo-Ochoa, P., Tzadikov, J., Peng, G., Sun, J., … Shalom, M. (2018). Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 14(21), 1800633. doi:10.1002/smll.201800633

Faul, C. F. J., & Antonietti, M. (2003). Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Advanced Materials, 15(9), 673-683. doi:10.1002/adma.200300379

Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410

De Ridder, D. J. A., Goubitz, K., Brodski, V., Peschar, R., & Schenk, H. (2004). Crystal Structure of Melaminium Orthophosphate from High-Resolution Synchrotron Powder-Diffraction Data. Helvetica Chimica Acta, 87(7), 1894-1905. doi:10.1002/hlca.200490168

Li, X.-M., Feng, S.-S., Wang, F., Ma, Q., & Zhu, M.-L. (2009). Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate. Acta Crystallographica Section E Structure Reports Online, 66(1), o239-o240. doi:10.1107/s1600536809054798

Jürgens, B., Irran, E., Senker, J., Kroll, P., Müller, H., & Schnick, W. (2003). Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society, 125(34), 10288-10300. doi:10.1021/ja0357689

Barrio, J., Grafmüller, A., Tzadikov, J., & Shalom, M. (2018). Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Applied Catalysis B: Environmental, 237, 681-688. doi:10.1016/j.apcatb.2018.06.043

Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. doi:10.1007/s10853-005-2096-3

Naik, A. D., Fontaine, G., Samyn, F., Delva, X., Louisy, J., Bellayer, S., … Bourbigot, S. (2014). Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Safety Journal, 70, 46-60. doi:10.1016/j.firesaf.2014.08.019

Guo, M., Huang, J., Kong, X., Peng, H., Shui, H., Qian, F., … Zhang, Q. (2016). Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Materials, 31(3), 352-362. doi:10.1016/s1872-5805(16)60019-7

Wu, J., Yang, S., Li, J., Yang, Y., Wang, G., Bu, X., … Xie, X. (2016). Electron Injection of Phosphorus Doped g-C3N4Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 4(12), 2095-2101. doi:10.1002/adom.201600570

Fukushima, A., Hayashi, A., Yamamura, H., & Tatsumisago, M. (2017). Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics, 304, 85-89. doi:10.1016/j.ssi.2017.03.010

Xie, M., Tang, J., Kong, L., Lu, W., Natarajan, V., Zhu, F., & Zhan, J. (2019). Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal, 360, 1213-1222. doi:10.1016/j.cej.2018.10.130

Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135

Wulff, G., Schmidt, H., & Zhu, L. (1999). Generating hydrophilic surfaces on standard polymers after copolymerization with low amounts of protected vinyl sugars. Macromolecular Chemistry and Physics, 200(4), 774-782. doi:10.1002/(sici)1521-3935(19990401)200:4<774::aid-macp774>3.0.co;2-j

Xu, J., Zhang, L., Shi, R., & Zhu, Y. (2013). Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 1(46), 14766. doi:10.1039/c3ta13188b

Kulkarni, G. U., Laruelle, S., & Roberts, M. W. (1996). The oxygen state active in the catalytic oxidation of carbon monoxide at a caesium surface: isolation of the reactive anionic CO2δ–species. Chem. Commun., (1), 9-10. doi:10.1039/cc9960000009

Wang, L., Wang, C., Hu, X., Xue, H., & Pang, H. (2016). Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - An Asian Journal, 11(23), 3305-3328. doi:10.1002/asia.201601178

Barrio, J., Mateo, D., Albero, J., García, H., & Shalom, M. (2019). A Heterogeneous Carbon Nitride–Nickel Photocatalyst for Efficient Low‐Temperature CO 2 Methanation. Advanced Energy Materials, 9(44), 1902738. doi:10.1002/aenm.201902738

Alrafei, B., Polaert, I., Ledoux, A., & Azzolina-Jury, F. (2020). Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today, 346, 23-33. doi:10.1016/j.cattod.2019.03.026

Yang Lim, J., McGregor, J., Sederman, A. J., & Dennis, J. S. (2016). Kinetic studies of CO 2 methanation over a Ni/ γ -Al 2 O 3 catalyst using a batch reactor. Chemical Engineering Science, 141, 28-45. doi:10.1016/j.ces.2015.10.026

Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726

Sheldrick, G. M. (2015). SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), 3-8. doi:10.1107/s2053273314026370

Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218

Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251

Pack, J. D., & Monkhorst, H. J. (1977). «Special points for Brillouin-zone integrations»—a reply. Physical Review B, 16(4), 1748-1749. doi:10.1103/physrevb.16.1748

Blöchl, P. E., Jepsen, O., & Andersen, O. K. (1994). Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23), 16223-16233. doi:10.1103/physrevb.49.16223

Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. doi:10.1103/physrevb.43.1993

Kleinman, L., & Bylander, D. M. (1982). Efficacious Form for Model Pseudopotentials. Physical Review Letters, 48(20), 1425-1428. doi:10.1103/physrevlett.48.1425

Pickard, C. J., & Mauri, F. (2001). All-electron magnetic response with pseudopotentials: NMR chemical shifts. Physical Review B, 63(24). doi:10.1103/physrevb.63.245101

Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., … Dal Corso, A. (2016). Reproducibility in density functional theory calculations of solids. Science, 351(6280). doi:10.1126/science.aad3000

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem