- -

Edible coatings controlling mass loss and Penicillium roqueforti growth during cheese ripening

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Edible coatings controlling mass loss and Penicillium roqueforti growth during cheese ripening

Show simple item record

Files in this item

dc.contributor.author Ordóñez, Ramón es_ES
dc.contributor.author Contreras Monzón, Carolina Ivonne es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-09-02T03:31:30Z
dc.date.available 2021-09-02T03:31:30Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 0260-8774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171218
dc.description.abstract [EN] The application of edible coatings carrying antifungal compounds on cheese was studied to reduce mass losses and control the fungal growth on the cheese surface during ripening. The effectiveness of 8 biopolymers and Aloe vera gel (AV) at controlling mass loss was analysed during the early stage of maturation, with and without lipids (Oleic acid and oleic acid-beeswax blend) and antifungal compounds (potassium sorbate (PS)), gallic tannin (GT) and Aloe vera gel. The gellan gum with both PS and GT exhibited the greatest efficacy at controlling the cheese water loss during the ripening period. The AV gel and its blend with gellan gum did not exert a good water vapour barrier capacity, although it did exhibit antifungal action against Penicillium roqueforti. The coating of gellan with PS resulted in an 84% inhibition of mycelial growth and could prevent fungal growth during cheese ripening, while controlling the cheese mass loss. es_ES
dc.description.sponsorship The authors thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Ram.on Ordonez thanks the Honduras 2020 grant program for the received support. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation MINECO/AGL2016-76699-R es_ES
dc.relation.ispartof Journal of Food Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Edible coatings es_ES
dc.subject Cheese es_ES
dc.subject Antifungal control es_ES
dc.subject Mass loss control es_ES
dc.subject Gellan gum es_ES
dc.subject Potassium sorbate es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Edible coatings controlling mass loss and Penicillium roqueforti growth during cheese ripening es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfoodeng.2020.110174 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Ordóñez, R.; Contreras Monzón, CI.; González Martínez, MC.; Chiralt Boix, MA. (2021). Edible coatings controlling mass loss and Penicillium roqueforti growth during cheese ripening. Journal of Food Engineering. 290:1-7. https://doi.org/10.1016/j.jfoodeng.2020.110174 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfoodeng.2020.110174 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 290 es_ES
dc.relation.pasarela S\430900 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Castillo, S., Navarro, D., Zapata, P. J., Guillén, F., Valero, D., Serrano, M., & Martínez-Romero, D. (2010). Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biology and Technology, 57(3), 183-188. doi:10.1016/j.postharvbio.2010.04.006 es_ES
dc.description.references Choi, S., & Chung, M.-H. (2003). A review on the relationship between aloe vera components and their biologic effects. Seminars in Integrative Medicine, 1(1), 53-62. doi:10.1016/s1543-1150(03)00005-x es_ES
dc.description.references Costa, M. J., Maciel, L. C., Teixeira, J. A., Vicente, A. A., & Cerqueira, M. A. (2018). Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 107, 84-92. doi:10.1016/j.foodres.2018.02.013 es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015 es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393-400. doi:10.1016/j.jfoodeng.2007.07.022 es_ES
dc.description.references González-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi-hard cheese during ripening. Heliyon, 5(6), e01957. doi:10.1016/j.heliyon.2019.e01957 es_ES
dc.description.references Guo, J., Sun, W., Kim, J. P., Lu, X., Li, Q., Lin, M., … Yang, J. (2018). Development of tannin-inspired antimicrobial bioadhesives. Acta Biomaterialia, 72, 35-44. doi:10.1016/j.actbio.2018.03.008 es_ES
dc.description.references Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137-150. doi:10.1016/j.aninu.2017.09.004 es_ES
dc.description.references Lacroix, M., Le, T. ., Ouattara, B., Yu, H., Letendre, M., Sabato, S. ., … Patterson, G. (2002). Use of γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics. Radiation Physics and Chemistry, 63(3-6), 827-832. doi:10.1016/s0969-806x(01)00574-6 es_ES
dc.description.references López, O. V., Giannuzzi, L., Zaritzky, N. E., & García, M. A. (2013). Potassium sorbate controlled release from corn starch films. Materials Science and Engineering: C, 33(3), 1583-1591. doi:10.1016/j.msec.2012.12.064 es_ES
dc.description.references Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology, 79, 60-69. doi:10.1016/j.lwt.2017.01.024 es_ES
dc.description.references Ortega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1-10. doi:10.1016/j.foodhyd.2017.05.023 es_ES
dc.description.references Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004 es_ES
dc.description.references Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A. R., Rahman, W. A. W. A., … Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123. doi:10.1016/j.tifs.2013.08.001 es_ES
dc.description.references Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374. doi:10.1016/j.carbpol.2015.10.074 es_ES
dc.description.references Var, I., Erginkaya, Z., Güven, M., & Kabak, B. (2006). Effects of antifungal agent and packaging material on microflora of Kashar cheese during storage period. Food Control, 17(2), 132-136. doi:10.1016/j.foodcont.2004.09.012 es_ES


This item appears in the following Collection(s)

Show simple item record