Mostrar el registro sencillo del ítem
dc.contributor.author | Hernandez-Farias, Delia Irazu | es_ES |
dc.contributor.author | Prati, Ronaldo | es_ES |
dc.contributor.author | Herrera, Francisco | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2021-09-03T03:33:28Z | |
dc.date.available | 2021-09-03T03:33:28Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.issn | 1064-1246 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171314 | |
dc.description.abstract | [EN] Irony detection is a not trivial problem and can help to improve natural language processing tasks as sentiment analysis. When dealing with social media data in real scenarios, an important issue to address is data skew, i.e. the imbalance between available ironic and non-ironic samples available. In this work, the main objective is to address irony detection in Twitter considering various degrees of imbalanced distribution between classes. We rely on the emotIDM irony detection model. We evaluated it against both benchmark corpora and skewed Twitter datasets collected to simulate a realistic distribution of ironic tweets. We carry out a set of classification experiments aimed to determine the impact of class imbalance on detecting irony, and we evaluate the performance of irony detection when different scenarios are considered. We experiment with a set of classifiers applying class imbalance techniques to compensate class distribution. Our results indicate that by using such techniques, it is possible to improve the performance of irony detection in imbalanced class scenarios. | es_ES |
dc.description.sponsorship | The first author was funded by CONACYT project FC-2016/2410. Ronaldo Prati was supported by the São Paulo State (Brazil) research council FAPESP under project 2015/20606-6. Francisco Herrera was partially supported by the Spanish National Research Project TIN2017-89517-P. The work of Paolo Rosso was partially supported by the Spanish MICINN under the research project MISMIS (PGC2018-096212- B-C31) and by the Generalitat Valenciana under the grant PROMETEO/2019/121. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation | AEI/PGC2018-096212-B-C31-AR | es_ES |
dc.relation.ispartof | Journal of Intelligent & Fuzzy Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Irony detection | es_ES |
dc.subject | Class imbalance | es_ES |
dc.subject | Imbalanced learning | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Irony Detection in Twitter with Imbalanced Class Distributions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3233/JIFS-179880 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2015%2F20606-6/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89517-P/ES/SMART-DASCI: MODELOS DE CIENCIA DE DATOS E INTELIGENCIA COMPUTACIONAL: TENDIENDO EL PUENTE ENTRE BIG DATA Y SMART DATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//FC-2016%2F2410/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Hernandez-Farias, DI.; Prati, R.; Herrera, F.; Rosso, P. (2020). Irony Detection in Twitter with Imbalanced Class Distributions. Journal of Intelligent & Fuzzy Systems. 39(2):2147-2163. https://doi.org/10.3233/JIFS-179880 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3233/JIFS-179880 | es_ES |
dc.description.upvformatpinicio | 2147 | es_ES |
dc.description.upvformatpfin | 2163 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 39 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\433817 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.description.references | Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20-29. doi:10.1145/1007730.1007735 | es_ES |
dc.description.references | Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953 | es_ES |
dc.description.references | Fernández A. , García S. , Galar M. , Prati R.C. , Krawczyk B. and Herrera F. , Learning from imbalanced data sets, Springer, (2018). | es_ES |
dc.description.references | Haibo He, & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. doi:10.1109/tkde.2008.239 | es_ES |
dc.description.references | Farías, D. I. H., Patti, V., & Rosso, P. (2016). Irony Detection in Twitter. ACM Transactions on Internet Technology, 16(3), 1-24. doi:10.1145/2930663 | es_ES |
dc.description.references | Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study1. Intelligent Data Analysis, 6(5), 429-449. doi:10.3233/ida-2002-6504 | es_ES |
dc.description.references | Kumon-Nakamura, S., Glucksberg, S., & Brown, M. (1995). How about another piece of pie: The allusional pretense theory of discourse irony. Journal of Experimental Psychology: General, 124(1), 3-21. doi:10.1037/0096-3445.124.1.3 | es_ES |
dc.description.references | López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113-141. doi:10.1016/j.ins.2013.07.007 | es_ES |
dc.description.references | Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x | es_ES |
dc.description.references | Mohammad, S. M., Zhu, X., Kiritchenko, S., & Martin, J. (2015). Sentiment, emotion, purpose, and style in electoral tweets. Information Processing & Management, 51(4), 480-499. doi:10.1016/j.ipm.2014.09.003 | es_ES |
dc.description.references | Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., & Bandyopadhyay, S. (2013). Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining. IEEE Intelligent Systems, 28(2), 31-38. doi:10.1109/mis.2013.4 | es_ES |
dc.description.references | Prati, R. C., Batista, G. E. A. P. A., & Silva, D. F. (2014). Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, 45(1), 247-270. doi:10.1007/s10115-014-0794-3 | es_ES |
dc.description.references | Reyes, A., Rosso, P., & Veale, T. (2012). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation, 47(1), 239-268. doi:10.1007/s10579-012-9196-x | es_ES |
dc.description.references | Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035 | es_ES |
dc.description.references | Utsumi, A. (2000). Verbal irony as implicit display of ironic environment: Distinguishing ironic utterances from nonirony. Journal of Pragmatics, 32(12), 1777-1806. doi:10.1016/s0378-2166(99)00116-2 | es_ES |
dc.description.references | Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521 | es_ES |
dc.description.references | Wilson, D., & Sperber, D. (1992). On verbal irony. Lingua, 87(1-2), 53-76. doi:10.1016/0024-3841(92)90025-e | es_ES |