- -

Irony Detection in Twitter with Imbalanced Class Distributions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Irony Detection in Twitter with Imbalanced Class Distributions

Mostrar el registro completo del ítem

Hernandez-Farias, DI.; Prati, R.; Herrera, F.; Rosso, P. (2020). Irony Detection in Twitter with Imbalanced Class Distributions. Journal of Intelligent & Fuzzy Systems. 39(2):2147-2163. https://doi.org/10.3233/JIFS-179880

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171314

Ficheros en el ítem

Metadatos del ítem

Título: Irony Detection in Twitter with Imbalanced Class Distributions
Autor: Hernandez-Farias, Delia Irazu Prati, Ronaldo Herrera, Francisco Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Irony detection is a not trivial problem and can help to improve natural language processing tasks as sentiment analysis. When dealing with social media data in real scenarios, an important issue to address is data ...[+]
Palabras clave: Irony detection , Class imbalance , Imbalanced learning
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179880
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/JIFS-179880
Código del Proyecto:
info:eu-repo/grantAgreement/FAPESP//2015%2F20606-6/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89517-P/ES/SMART-DASCI: MODELOS DE CIENCIA DE DATOS E INTELIGENCIA COMPUTACIONAL: TENDIENDO EL PUENTE ENTRE BIG DATA Y SMART DATA/
info:eu-repo/grantAgreement/CONACyT//FC-2016%2F2410/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/
AEI/PGC2018-096212-B-C31-AR
Agradecimientos:
The first author was funded by CONACYT project FC-2016/2410. Ronaldo Prati was supported by the São Paulo State (Brazil) research council FAPESP under project 2015/20606-6. Francisco Herrera was partially supported by ...[+]
Tipo: Artículo

References

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20-29. doi:10.1145/1007730.1007735

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953

Fernández A. , García S. , Galar M. , Prati R.C. , Krawczyk B. and Herrera F. , Learning from imbalanced data sets, Springer, (2018). [+]
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20-29. doi:10.1145/1007730.1007735

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953

Fernández A. , García S. , Galar M. , Prati R.C. , Krawczyk B. and Herrera F. , Learning from imbalanced data sets, Springer, (2018).

Haibo He, & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. doi:10.1109/tkde.2008.239

Farías, D. I. H., Patti, V., & Rosso, P. (2016). Irony Detection in Twitter. ACM Transactions on Internet Technology, 16(3), 1-24. doi:10.1145/2930663

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study1. Intelligent Data Analysis, 6(5), 429-449. doi:10.3233/ida-2002-6504

Kumon-Nakamura, S., Glucksberg, S., & Brown, M. (1995). How about another piece of pie: The allusional pretense theory of discourse irony. Journal of Experimental Psychology: General, 124(1), 3-21. doi:10.1037/0096-3445.124.1.3

López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113-141. doi:10.1016/j.ins.2013.07.007

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Mohammad, S. M., Zhu, X., Kiritchenko, S., & Martin, J. (2015). Sentiment, emotion, purpose, and style in electoral tweets. Information Processing & Management, 51(4), 480-499. doi:10.1016/j.ipm.2014.09.003

Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., & Bandyopadhyay, S. (2013). Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining. IEEE Intelligent Systems, 28(2), 31-38. doi:10.1109/mis.2013.4

Prati, R. C., Batista, G. E. A. P. A., & Silva, D. F. (2014). Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, 45(1), 247-270. doi:10.1007/s10115-014-0794-3

Reyes, A., Rosso, P., & Veale, T. (2012). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation, 47(1), 239-268. doi:10.1007/s10579-012-9196-x

Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035

Utsumi, A. (2000). Verbal irony as implicit display of ironic environment: Distinguishing ironic utterances from nonirony. Journal of Pragmatics, 32(12), 1777-1806. doi:10.1016/s0378-2166(99)00116-2

Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521

Wilson, D., & Sperber, D. (1992). On verbal irony. Lingua, 87(1-2), 53-76. doi:10.1016/0024-3841(92)90025-e

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem