- -

A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency

Show full item record

Broatch, A.; Olmeda, P.; Margot, XM.; Gómez-Soriano, J. (2021). A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency. International Journal of Engine Research. 22(7):2390-2404. https://doi.org/10.1177/1468087420921584

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171319

Files in this item

Item Metadata

Title: A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency
Author: Broatch, A. Olmeda, P. Margot, Xandra Marcelle Gómez-Soriano, Josep
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] This article presents a study of the impact on engine efficiency of the heat loss reduction due to in-cylinder coating insulation. A numerical methodology based on one-dimensional heat transfer model is developed. ...[+]
Subjects: One-dimensional thermal modeling , Insulation coatings , Heat transfer , Engine efficiency
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087420921584
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/1468087420921584
Project ID:
info:eu-repo/grantAgreement/EC/H2020/724084/EU/Efficient Additivated Gasoline Lean Engine/
info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/
Description: This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420921584.
Thanks:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The equipment used in this work has been partially supported by FEDER project funds ...[+]
Type: Artículo

References

Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830

Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010

Al-Muhsen, N. F. O., Huang, Y., & Hong, G. (2019). Effects of direct injection timing associated with spark timing on a small spark ignition engine equipped with ethanol dual-injection. Fuel, 239, 852-861. doi:10.1016/j.fuel.2018.10.118 [+]
Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830

Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010

Al-Muhsen, N. F. O., Huang, Y., & Hong, G. (2019). Effects of direct injection timing associated with spark timing on a small spark ignition engine equipped with ethanol dual-injection. Fuel, 239, 852-861. doi:10.1016/j.fuel.2018.10.118

Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106

Berni, F., Cicalese, G., & Fontanesi, S. (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. doi:10.1016/j.applthermaleng.2017.01.055

Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084

Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264

Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Giakoumis, E. G. (2004). Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 24(5-6), 679-702. doi:10.1016/j.applthermaleng.2003.11.002

Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013

Powell, T., O’Donnell, R., Hoffman, M., Filipi, Z., Jordan, E. H., Kumar, R., & Killingsworth, N. J. (2019). Experimental investigation of the relationship between thermal barrier coating structured porosity and homogeneous charge compression ignition engine combustion. International Journal of Engine Research, 22(1), 88-108. doi:10.1177/1468087419843752

Somhorst, J., Oevermann, M., Bovo, M., & Denbratt, I. (2019). Evaluation of thermal barrier coatings and surface roughness in a single-cylinder light-duty diesel engine. International Journal of Engine Research, 22(3), 890-910. doi:10.1177/1468087419875837

Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274

Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661

Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:7<587::aid-er604>3.0.co;2-f

Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066

Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006

Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639

Andruskiewicz, P., Najt, P., Durrett, R., & Payri, R. (2017). Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research, 19(6), 599-612. doi:10.1177/1468087417729254

Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006

Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Olmeda, P., Martín, J., Arnau, F. J., & Artham, S. (2019). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research, 21(6), 1037-1054. doi:10.1177/1468087419878593

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record