- -

A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Broatch, A. es_ES
dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Margot, Xandra Marcelle es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.date.accessioned 2021-09-03T03:33:51Z
dc.date.available 2021-09-03T03:33:51Z
dc.date.issued 2021-07-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171319
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420921584. es_ES
dc.description.abstract [EN] This article presents a study of the impact on engine efficiency of the heat loss reduction due to in-cylinder coating insulation. A numerical methodology based on one-dimensional heat transfer model is developed. Since there is no analytic solution for engines, the one-dimensional model was validated with the results of a simple "equivalent" problem, and then applied to different engine boundary conditions. Later on, the analysis of the effect of different coating properties on the heat transfer using the simplified one-dimensional heat transfer model is performed. After that, the model is coupled with a complete virtual engine that includes both thermodynamic and thermal modeling. Next, the thermal flows across the cylinder parts coated with the insulation material (piston and cylinder head) are predicted and the effect of the coating on engine indicated efficiency is analyzed in detail. The results show the gain limits, in terms of engine efficiency, that may be obtained with advanced coating solutions. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The equipment used in this work has been partially supported by FEDER project funds "otacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT)'' (Grant No. FEDER-ICTS-2012-06), framed in the operational program of unique scientific and technical infrastructure of the Spanish Government. This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 724084. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject One-dimensional thermal modeling es_ES
dc.subject Insulation coatings es_ES
dc.subject Heat transfer es_ES
dc.subject Engine efficiency es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087420921584 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/724084/EU/Efficient Additivated Gasoline Lean Engine/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Broatch, A.; Olmeda, P.; Margot, XM.; Gómez-Soriano, J. (2021). A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency. International Journal of Engine Research. 22(7):2390-2404. https://doi.org/10.1177/1468087420921584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087420921584 es_ES
dc.description.upvformatpinicio 2390 es_ES
dc.description.upvformatpfin 2404 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\421944 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010 es_ES
dc.description.references Al-Muhsen, N. F. O., Huang, Y., & Hong, G. (2019). Effects of direct injection timing associated with spark timing on a small spark ignition engine equipped with ethanol dual-injection. Fuel, 239, 852-861. doi:10.1016/j.fuel.2018.10.118 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references Berni, F., Cicalese, G., & Fontanesi, S. (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. doi:10.1016/j.applthermaleng.2017.01.055 es_ES
dc.description.references Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084 es_ES
dc.description.references Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264 es_ES
dc.description.references Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Giakoumis, E. G. (2004). Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 24(5-6), 679-702. doi:10.1016/j.applthermaleng.2003.11.002 es_ES
dc.description.references Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013 es_ES
dc.description.references Powell, T., O’Donnell, R., Hoffman, M., Filipi, Z., Jordan, E. H., Kumar, R., & Killingsworth, N. J. (2019). Experimental investigation of the relationship between thermal barrier coating structured porosity and homogeneous charge compression ignition engine combustion. International Journal of Engine Research, 22(1), 88-108. doi:10.1177/1468087419843752 es_ES
dc.description.references Somhorst, J., Oevermann, M., Bovo, M., & Denbratt, I. (2019). Evaluation of thermal barrier coatings and surface roughness in a single-cylinder light-duty diesel engine. International Journal of Engine Research, 22(3), 890-910. doi:10.1177/1468087419875837 es_ES
dc.description.references Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274 es_ES
dc.description.references Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 es_ES
dc.description.references Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:7<587::aid-er604>3.0.co;2-f es_ES
dc.description.references Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 es_ES
dc.description.references Andruskiewicz, P., Najt, P., Durrett, R., & Payri, R. (2017). Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research, 19(6), 599-612. doi:10.1177/1468087417729254 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Olmeda, P., Martín, J., Arnau, F. J., & Artham, S. (2019). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research, 21(6), 1037-1054. doi:10.1177/1468087419878593 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem