- -

Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation

Show full item record

Broatch, A.; Novella Rosa, R.; Garcia Tiscar, J.; Gómez-Soriano, J.; Pal, P. (2020). Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation. Physics of Fluids. 32(8):1-16. https://doi.org/10.1063/5.0011929

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171321

Files in this item

Item Metadata

Title: Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation
Author: Broatch, A. Novella Rosa, Ricardo GARCIA TISCAR, JORGE Gómez-Soriano, Josep Pal, P.
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] As computational capabilities continue to grow, exploring the limits of computational fluid dynamics to capture complex and elusive phenomena, which are otherwise difficult to study by experimental techniques, is one ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Physics of Fluids. (issn: 1070-6631 )
DOI: 10.1063/5.0011929
Publisher:
American Institute of Physics
Publisher version: https://doi.org/10.1063/5.0011929
Project ID:
info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1353/
info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
Ministerio de Economía y Competitividad/FEDER-ICTS-2012-06
Thanks:
The submitted manuscript was created partly by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. ...[+]
Type: Artículo

References

C. Nugent, N. Blanes, J. Fons, M. Sáinz de la Maza, M. J. Ramos, F. Domingues, A. van Baek, and D. Houthuijs, “Noise in Europe 2014,” Technical Report 62, European Environment Agency, 2014.

Benajes, J., Novella, R., Pastor, J. M., Hernández-López, A., Hasegawa, M., Tsuji, N., … Alonso, M. (2016). Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation. Energy Conversion and Management, 110, 212-229. doi:10.1016/j.enconman.2015.12.010

Torregrosa, A. J., Broatch, A., Novella, R., & Mónico, L. F. (2011). Suitability analysis of advanced diesel combustion concepts for emissions and noise control. Energy, 36(2), 825-838. doi:10.1016/j.energy.2010.12.032 [+]
C. Nugent, N. Blanes, J. Fons, M. Sáinz de la Maza, M. J. Ramos, F. Domingues, A. van Baek, and D. Houthuijs, “Noise in Europe 2014,” Technical Report 62, European Environment Agency, 2014.

Benajes, J., Novella, R., Pastor, J. M., Hernández-López, A., Hasegawa, M., Tsuji, N., … Alonso, M. (2016). Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation. Energy Conversion and Management, 110, 212-229. doi:10.1016/j.enconman.2015.12.010

Torregrosa, A. J., Broatch, A., Novella, R., & Mónico, L. F. (2011). Suitability analysis of advanced diesel combustion concepts for emissions and noise control. Energy, 36(2), 825-838. doi:10.1016/j.energy.2010.12.032

Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025

Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010

Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089

Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006

Schwarz, A., & Janicka, J. (Eds.). (2009). Combustion Noise. doi:10.1007/978-3-642-02038-4

Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A. G., & Boulouchos, K. (2014). Investigation of cycle-to-cycle variations in an engine-like geometry. Physics of Fluids, 26(12), 125104. doi:10.1063/1.4903930

Zentgraf, F., Baum, E., Böhm, B., Dreizler, A., & Peterson, B. (2016). On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence. Physics of Fluids, 28(4), 045108. doi:10.1063/1.4945785

Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8

Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264

Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659

Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107

Bi, F., Li, L., Zhang, J., & Ma, T. (2015). Source identification of gasoline engine noise based on continuous wavelet transform and EEMD–RobustICA. Applied Acoustics, 100, 34-42. doi:10.1016/j.apacoust.2015.07.007

Zhao, X., Cheng, Y., & Ji, S. (2017). Combustion parameters identification and correction in diesel engine via vibration acceleration signal. Applied Acoustics, 116, 205-215. doi:10.1016/j.apacoust.2016.09.030

Mao, J., Hao, Z., Jing, G., Zheng, X., & Liu, C. (2013). Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Applied Acoustics, 74(1), 150-159. doi:10.1016/j.apacoust.2012.07.005

Duvigneau, F., Luft, T., Hots, J., Verhey, J. L., Rottengruber, H., & Gabbert, U. (2016). Thermo-acoustic performance of full engine encapsulations – A numerical, experimental and psychoacoustic study. Applied Acoustics, 102, 79-87. doi:10.1016/j.apacoust.2015.09.012

Rolland, E. O., De Domenico, F., & Hochgreb, S. (2018). Direct and Indirect Noise Generated by Entropic and Compositional Inhomogeneities. Journal of Engineering for Gas Turbines and Power, 140(8). doi:10.1115/1.4039050

Crighton, D. G., Dowling, A. P., Williams, J. E. F., Heckl, M., & Leppington, F. G. (1992). Thermoacoustic Sources and Instabilities. Modern Methods in Analytical Acoustics, 378-405. doi:10.1007/978-1-4471-0399-8_13

De Domenico, F., Rolland, E. O., & Hochgreb, S. (2017). Detection of direct and indirect noise generated by synthetic hot spots in a duct. Journal of Sound and Vibration, 394, 220-236. doi:10.1016/j.jsv.2017.01.004

Persico, G., Gaetani, P., & Spinelli, A. (2017). Assessment of synthetic entropy waves for indirect combustion noise experiments in gas turbines. Experimental Thermal and Fluid Science, 88, 376-388. doi:10.1016/j.expthermflusci.2017.06.012

Busch, S., Zha, K., Warey, A., Pesce, F., & Peterson, R. (2016). On the Reduction of Combustion Noise by a Close-Coupled Pilot Injection in a Small-Bore Direct-Injection Diesel Engine. Journal of Engineering for Gas Turbines and Power, 138(10). doi:10.1115/1.4032864

Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910

Kruse, A., Ruziewicz, A., Nemś, A., & Tajmar, M. (2019). Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage. Energy Conversion and Management, 181, 26-35. doi:10.1016/j.enconman.2018.11.070

Priede, T. (1960). Relation between Form of Cylinder-Pressure Diagram and Noise in Diesel Engines. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 14(1), 63-97. doi:10.1243/pime_auto_1960_000_012_02

Ibarra, D., Ramírez-Mendoza, R., & López, E. (2017). Noise emission from alternative fuel vehicles: Study case. Applied Acoustics, 118, 58-65. doi:10.1016/j.apacoust.2016.11.010

DRAPER, C. S. (1938). Pressure Waves Accompanying Detonation in the Internal Combustion Engine. Journal of the Aeronautical Sciences, 5(6), 219-226. doi:10.2514/8.590

Priede, T., & Grover, E. C. (1966). Paper 2: Noise of Industrial Diesel Engines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 181(3), 73-89. doi:10.1243/pime_conf_1966_181_062_02

Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583

CONVERGE 2.2 Theory Manual, CONVERGENT SCIENCE, Inc., 2015.

Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035

SMAGORINSKY, J. (1963). GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS. Monthly Weather Review, 91(3), 99-164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2

Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013

Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9

Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503

Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578

Moiz, A. A., Ameen, M. M., Lee, S.-Y., & Som, S. (2016). Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combustion and Flame, 173, 123-131. doi:10.1016/j.combustflame.2016.08.005

Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x

Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40

P. J. O’Rourke, “Collective drop effects on vaporizing liquid sprays,” Ph.D. thesis, Los Alamos National Laboratory, NM, USA, 1981.

A. A. Amsden, P. J. O’rourke, and T. D. Butler, “KIVA-II: A computer program for chemically reactive flows with sprays,” Technical Report No. LA-11560-MS, Los Alamos National Laboratory, NM, USA, 1989.

Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035

Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021

Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007

Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287

Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045

Strahle, W. C. (1977). Combustion randomness and Diesel engine noise: Theory and initial experiments. Combustion and Flame, 28, 279-290. doi:10.1016/0010-2180(77)90033-5

LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041

Bagheri, S. (2013). Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726, 596-623. doi:10.1017/jfm.2013.249

Caux-Brisebois, V., Steinberg, A. M., Arndt, C. M., & Meier, W. (2014). Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combustion and Flame, 161(12), 3166-3180. doi:10.1016/j.combustflame.2014.05.020

Chen, H., Hung, D. L. S., Xu, M., Zhuang, H., & Yang, J. (2014). Proper orthogonal decomposition analysis of fuel spray structure variation in a spark-ignition direct-injection optical engine. Experiments in Fluids, 55(4). doi:10.1007/s00348-014-1703-y

Bizon, K., Continillo, G., Lombardi, S., Sementa, P., & Vaglieco, B. M. (2016). Independent component analysis of cycle resolved combustion images from a spark ignition optical engine. Combustion and Flame, 163, 258-269. doi:10.1016/j.combustflame.2015.10.002

Danby, S. J., & Echekki, T. (2006). Proper orthogonal decomposition analysis of autoignition simulation data of nonhomogeneous hydrogen–air mixtures. Combustion and Flame, 144(1-2), 126-138. doi:10.1016/j.combustflame.2005.06.014

Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A., & Chen, J. H. (2017). A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proceedings of the Combustion Institute, 36(3), 3567-3575. doi:10.1016/j.proci.2016.08.043

Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2

Torregrosa, A. J., Broatch, A., Margot, X., & Gomez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research, 21(8), 1273-1285. doi:10.1177/1468087418803030

Tissot, G., Cordier, L., Benard, N., & Noack, B. R. (2014). Model reduction using Dynamic Mode Decomposition. Comptes Rendus Mécanique, 342(6-7), 410-416. doi:10.1016/j.crme.2013.12.011

Markovich, D. M., Abdurakipov, S. S., Chikishev, L. M., Dulin, V. M., & Hanjalić, K. (2014). Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Physics of Fluids, 26(6), 065109. doi:10.1063/1.4884915

Chen, C., Pal, P., Ameen, M., Feng, D., & Wei, H. (2020). Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine. Applied Energy, 261, 114447. doi:10.1016/j.apenergy.2019.114447

Pal, P., Kolodziej, C. P., Choi, S., Som, S., Broatch, A., Gomez-Soriano, J., … See, Y. C. (2018). Development of a Virtual CFR Engine Model for Knocking Combustion Analysis. SAE International Journal of Engines, 11(6), 1069-1082. doi:10.4271/2018-01-0187

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record