Mostrar el registro sencillo del ítem
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | Novella Rosa, Ricardo | es_ES |
dc.contributor.author | GARCIA TISCAR, JORGE | es_ES |
dc.contributor.author | Gómez-Soriano, Josep | es_ES |
dc.contributor.author | Pal, P. | es_ES |
dc.date.accessioned | 2021-09-03T03:33:57Z | |
dc.date.available | 2021-09-03T03:33:57Z | |
dc.date.issued | 2020-08-01 | es_ES |
dc.identifier.issn | 1070-6631 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171321 | |
dc.description.abstract | [EN] As computational capabilities continue to grow, exploring the limits of computational fluid dynamics to capture complex and elusive phenomena, which are otherwise difficult to study by experimental techniques, is one of the main targets for the research community. This paper presents a detailed analysis of the physical processes that lead to combustion noise emissions in internal combustion engines. In particular, diesel combustion in a compression-ignition (CI) engine is studied in order to understand the singular behavior of the in-cylinder flow field responsible for the acoustic emissions. The main objective is, therefore, to improve the understanding of the phenomena involved in CI engine noise using large eddy simulations. Several visualization methods are employed to investigate the connection between combustion behavior and its effects on the pressure field. In addition, proper orthogonal decomposition is used to analyze the modal energy distribution among all the acoustic modes. The results show that the acoustic signature is fundamentally conditioned by the intensity of the premixed combustion rather than by the pressure oscillations generated by turbulent fluctuations in the flame surface established during the diffusion stage. | es_ES |
dc.description.sponsorship | The submitted manuscript was created partly by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was partly funded by the U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Michael Weismiller, program managers at the DOE, for their support. In addition, the authors would like to acknowledge the Laboratory Computing Resource Center (LCRC) at the Argonne National Laboratory for computing time on the Bebop cluster that was used in this research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation | Ministerio de Economía y Competitividad/FEDER-ICTS-2012-06 | es_ES |
dc.relation.ispartof | Physics of Fluids | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/5.0011929 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1353/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Broatch, A.; Novella Rosa, R.; Garcia Tiscar, J.; Gómez-Soriano, J.; Pal, P. (2020). Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation. Physics of Fluids. 32(8):1-16. https://doi.org/10.1063/5.0011929 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1063/5.0011929 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\417772 | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | C. Nugent, N. Blanes, J. Fons, M. Sáinz de la Maza, M. J. Ramos, F. Domingues, A. van Baek, and D. Houthuijs, “Noise in Europe 2014,” Technical Report 62, European Environment Agency, 2014. | es_ES |
dc.description.references | Benajes, J., Novella, R., Pastor, J. M., Hernández-López, A., Hasegawa, M., Tsuji, N., … Alonso, M. (2016). Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation. Energy Conversion and Management, 110, 212-229. doi:10.1016/j.enconman.2015.12.010 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Novella, R., & Mónico, L. F. (2011). Suitability analysis of advanced diesel combustion concepts for emissions and noise control. Energy, 36(2), 825-838. doi:10.1016/j.energy.2010.12.032 | es_ES |
dc.description.references | Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010 | es_ES |
dc.description.references | Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 | es_ES |
dc.description.references | Schwarz, A., & Janicka, J. (Eds.). (2009). Combustion Noise. doi:10.1007/978-3-642-02038-4 | es_ES |
dc.description.references | Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A. G., & Boulouchos, K. (2014). Investigation of cycle-to-cycle variations in an engine-like geometry. Physics of Fluids, 26(12), 125104. doi:10.1063/1.4903930 | es_ES |
dc.description.references | Zentgraf, F., Baum, E., Böhm, B., Dreizler, A., & Peterson, B. (2016). On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence. Physics of Fluids, 28(4), 045108. doi:10.1063/1.4945785 | es_ES |
dc.description.references | Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 | es_ES |
dc.description.references | Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659 | es_ES |
dc.description.references | Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107 | es_ES |
dc.description.references | Bi, F., Li, L., Zhang, J., & Ma, T. (2015). Source identification of gasoline engine noise based on continuous wavelet transform and EEMD–RobustICA. Applied Acoustics, 100, 34-42. doi:10.1016/j.apacoust.2015.07.007 | es_ES |
dc.description.references | Zhao, X., Cheng, Y., & Ji, S. (2017). Combustion parameters identification and correction in diesel engine via vibration acceleration signal. Applied Acoustics, 116, 205-215. doi:10.1016/j.apacoust.2016.09.030 | es_ES |
dc.description.references | Mao, J., Hao, Z., Jing, G., Zheng, X., & Liu, C. (2013). Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Applied Acoustics, 74(1), 150-159. doi:10.1016/j.apacoust.2012.07.005 | es_ES |
dc.description.references | Duvigneau, F., Luft, T., Hots, J., Verhey, J. L., Rottengruber, H., & Gabbert, U. (2016). Thermo-acoustic performance of full engine encapsulations – A numerical, experimental and psychoacoustic study. Applied Acoustics, 102, 79-87. doi:10.1016/j.apacoust.2015.09.012 | es_ES |
dc.description.references | Rolland, E. O., De Domenico, F., & Hochgreb, S. (2018). Direct and Indirect Noise Generated by Entropic and Compositional Inhomogeneities. Journal of Engineering for Gas Turbines and Power, 140(8). doi:10.1115/1.4039050 | es_ES |
dc.description.references | Crighton, D. G., Dowling, A. P., Williams, J. E. F., Heckl, M., & Leppington, F. G. (1992). Thermoacoustic Sources and Instabilities. Modern Methods in Analytical Acoustics, 378-405. doi:10.1007/978-1-4471-0399-8_13 | es_ES |
dc.description.references | De Domenico, F., Rolland, E. O., & Hochgreb, S. (2017). Detection of direct and indirect noise generated by synthetic hot spots in a duct. Journal of Sound and Vibration, 394, 220-236. doi:10.1016/j.jsv.2017.01.004 | es_ES |
dc.description.references | Persico, G., Gaetani, P., & Spinelli, A. (2017). Assessment of synthetic entropy waves for indirect combustion noise experiments in gas turbines. Experimental Thermal and Fluid Science, 88, 376-388. doi:10.1016/j.expthermflusci.2017.06.012 | es_ES |
dc.description.references | Busch, S., Zha, K., Warey, A., Pesce, F., & Peterson, R. (2016). On the Reduction of Combustion Noise by a Close-Coupled Pilot Injection in a Small-Bore Direct-Injection Diesel Engine. Journal of Engineering for Gas Turbines and Power, 138(10). doi:10.1115/1.4032864 | es_ES |
dc.description.references | Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910 | es_ES |
dc.description.references | Kruse, A., Ruziewicz, A., Nemś, A., & Tajmar, M. (2019). Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage. Energy Conversion and Management, 181, 26-35. doi:10.1016/j.enconman.2018.11.070 | es_ES |
dc.description.references | Priede, T. (1960). Relation between Form of Cylinder-Pressure Diagram and Noise in Diesel Engines. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 14(1), 63-97. doi:10.1243/pime_auto_1960_000_012_02 | es_ES |
dc.description.references | Ibarra, D., Ramírez-Mendoza, R., & López, E. (2017). Noise emission from alternative fuel vehicles: Study case. Applied Acoustics, 118, 58-65. doi:10.1016/j.apacoust.2016.11.010 | es_ES |
dc.description.references | DRAPER, C. S. (1938). Pressure Waves Accompanying Detonation in the Internal Combustion Engine. Journal of the Aeronautical Sciences, 5(6), 219-226. doi:10.2514/8.590 | es_ES |
dc.description.references | Priede, T., & Grover, E. C. (1966). Paper 2: Noise of Industrial Diesel Engines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 181(3), 73-89. doi:10.1243/pime_conf_1966_181_062_02 | es_ES |
dc.description.references | Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583 | es_ES |
dc.description.references | CONVERGE 2.2 Theory Manual, CONVERGENT SCIENCE, Inc., 2015. | es_ES |
dc.description.references | Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 | es_ES |
dc.description.references | SMAGORINSKY, J. (1963). GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS. Monthly Weather Review, 91(3), 99-164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 | es_ES |
dc.description.references | Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 | es_ES |
dc.description.references | Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 | es_ES |
dc.description.references | Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503 | es_ES |
dc.description.references | Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578 | es_ES |
dc.description.references | Moiz, A. A., Ameen, M. M., Lee, S.-Y., & Som, S. (2016). Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combustion and Flame, 173, 123-131. doi:10.1016/j.combustflame.2016.08.005 | es_ES |
dc.description.references | Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x | es_ES |
dc.description.references | Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 | es_ES |
dc.description.references | P. J. O’Rourke, “Collective drop effects on vaporizing liquid sprays,” Ph.D. thesis, Los Alamos National Laboratory, NM, USA, 1981. | es_ES |
dc.description.references | A. A. Amsden, P. J. O’rourke, and T. D. Butler, “KIVA-II: A computer program for chemically reactive flows with sprays,” Technical Report No. LA-11560-MS, Los Alamos National Laboratory, NM, USA, 1989. | es_ES |
dc.description.references | Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035 | es_ES |
dc.description.references | Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 | es_ES |
dc.description.references | Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007 | es_ES |
dc.description.references | Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045 | es_ES |
dc.description.references | Strahle, W. C. (1977). Combustion randomness and Diesel engine noise: Theory and initial experiments. Combustion and Flame, 28, 279-290. doi:10.1016/0010-2180(77)90033-5 | es_ES |
dc.description.references | LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041 | es_ES |
dc.description.references | Bagheri, S. (2013). Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726, 596-623. doi:10.1017/jfm.2013.249 | es_ES |
dc.description.references | Caux-Brisebois, V., Steinberg, A. M., Arndt, C. M., & Meier, W. (2014). Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combustion and Flame, 161(12), 3166-3180. doi:10.1016/j.combustflame.2014.05.020 | es_ES |
dc.description.references | Chen, H., Hung, D. L. S., Xu, M., Zhuang, H., & Yang, J. (2014). Proper orthogonal decomposition analysis of fuel spray structure variation in a spark-ignition direct-injection optical engine. Experiments in Fluids, 55(4). doi:10.1007/s00348-014-1703-y | es_ES |
dc.description.references | Bizon, K., Continillo, G., Lombardi, S., Sementa, P., & Vaglieco, B. M. (2016). Independent component analysis of cycle resolved combustion images from a spark ignition optical engine. Combustion and Flame, 163, 258-269. doi:10.1016/j.combustflame.2015.10.002 | es_ES |
dc.description.references | Danby, S. J., & Echekki, T. (2006). Proper orthogonal decomposition analysis of autoignition simulation data of nonhomogeneous hydrogen–air mixtures. Combustion and Flame, 144(1-2), 126-138. doi:10.1016/j.combustflame.2005.06.014 | es_ES |
dc.description.references | Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A., & Chen, J. H. (2017). A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proceedings of the Combustion Institute, 36(3), 3567-3575. doi:10.1016/j.proci.2016.08.043 | es_ES |
dc.description.references | Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., & Gomez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research, 21(8), 1273-1285. doi:10.1177/1468087418803030 | es_ES |
dc.description.references | Tissot, G., Cordier, L., Benard, N., & Noack, B. R. (2014). Model reduction using Dynamic Mode Decomposition. Comptes Rendus Mécanique, 342(6-7), 410-416. doi:10.1016/j.crme.2013.12.011 | es_ES |
dc.description.references | Markovich, D. M., Abdurakipov, S. S., Chikishev, L. M., Dulin, V. M., & Hanjalić, K. (2014). Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Physics of Fluids, 26(6), 065109. doi:10.1063/1.4884915 | es_ES |
dc.description.references | Chen, C., Pal, P., Ameen, M., Feng, D., & Wei, H. (2020). Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine. Applied Energy, 261, 114447. doi:10.1016/j.apenergy.2019.114447 | es_ES |
dc.description.references | Pal, P., Kolodziej, C. P., Choi, S., Som, S., Broatch, A., Gomez-Soriano, J., … See, Y. C. (2018). Development of a Virtual CFR Engine Model for Knocking Combustion Analysis. SAE International Journal of Engines, 11(6), 1069-1082. doi:10.4271/2018-01-0187 | es_ES |