- -

Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Broatch, A. es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author GARCIA TISCAR, JORGE es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.contributor.author Pal, P. es_ES
dc.date.accessioned 2021-09-03T03:33:57Z
dc.date.available 2021-09-03T03:33:57Z
dc.date.issued 2020-08-01 es_ES
dc.identifier.issn 1070-6631 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171321
dc.description.abstract [EN] As computational capabilities continue to grow, exploring the limits of computational fluid dynamics to capture complex and elusive phenomena, which are otherwise difficult to study by experimental techniques, is one of the main targets for the research community. This paper presents a detailed analysis of the physical processes that lead to combustion noise emissions in internal combustion engines. In particular, diesel combustion in a compression-ignition (CI) engine is studied in order to understand the singular behavior of the in-cylinder flow field responsible for the acoustic emissions. The main objective is, therefore, to improve the understanding of the phenomena involved in CI engine noise using large eddy simulations. Several visualization methods are employed to investigate the connection between combustion behavior and its effects on the pressure field. In addition, proper orthogonal decomposition is used to analyze the modal energy distribution among all the acoustic modes. The results show that the acoustic signature is fundamentally conditioned by the intensity of the premixed combustion rather than by the pressure oscillations generated by turbulent fluctuations in the flame surface established during the diffusion stage. es_ES
dc.description.sponsorship The submitted manuscript was created partly by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was partly funded by the U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Michael Weismiller, program managers at the DOE, for their support. In addition, the authors would like to acknowledge the Laboratory Computing Resource Center (LCRC) at the Argonne National Laboratory for computing time on the Bebop cluster that was used in this research. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation Ministerio de Economía y Competitividad/FEDER-ICTS-2012-06 es_ES
dc.relation.ispartof Physics of Fluids es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/5.0011929 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1353/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Broatch, A.; Novella Rosa, R.; Garcia Tiscar, J.; Gómez-Soriano, J.; Pal, P. (2020). Analysis of combustion acoustic phenomena in compression-ignition engines using large eddy simulation. Physics of Fluids. 32(8):1-16. https://doi.org/10.1063/5.0011929 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/5.0011929 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\417772 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references C. Nugent, N. Blanes, J. Fons, M. Sáinz de la Maza, M. J. Ramos, F. Domingues, A. van Baek, and D. Houthuijs, “Noise in Europe 2014,” Technical Report 62, European Environment Agency, 2014. es_ES
dc.description.references Benajes, J., Novella, R., Pastor, J. M., Hernández-López, A., Hasegawa, M., Tsuji, N., … Alonso, M. (2016). Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation. Energy Conversion and Management, 110, 212-229. doi:10.1016/j.enconman.2015.12.010 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Novella, R., & Mónico, L. F. (2011). Suitability analysis of advanced diesel combustion concepts for emissions and noise control. Energy, 36(2), 825-838. doi:10.1016/j.energy.2010.12.032 es_ES
dc.description.references Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010 es_ES
dc.description.references Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 es_ES
dc.description.references Schwarz, A., & Janicka, J. (Eds.). (2009). Combustion Noise. doi:10.1007/978-3-642-02038-4 es_ES
dc.description.references Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A. G., & Boulouchos, K. (2014). Investigation of cycle-to-cycle variations in an engine-like geometry. Physics of Fluids, 26(12), 125104. doi:10.1063/1.4903930 es_ES
dc.description.references Zentgraf, F., Baum, E., Böhm, B., Dreizler, A., & Peterson, B. (2016). On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence. Physics of Fluids, 28(4), 045108. doi:10.1063/1.4945785 es_ES
dc.description.references Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 es_ES
dc.description.references Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659 es_ES
dc.description.references Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107 es_ES
dc.description.references Bi, F., Li, L., Zhang, J., & Ma, T. (2015). Source identification of gasoline engine noise based on continuous wavelet transform and EEMD–RobustICA. Applied Acoustics, 100, 34-42. doi:10.1016/j.apacoust.2015.07.007 es_ES
dc.description.references Zhao, X., Cheng, Y., & Ji, S. (2017). Combustion parameters identification and correction in diesel engine via vibration acceleration signal. Applied Acoustics, 116, 205-215. doi:10.1016/j.apacoust.2016.09.030 es_ES
dc.description.references Mao, J., Hao, Z., Jing, G., Zheng, X., & Liu, C. (2013). Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Applied Acoustics, 74(1), 150-159. doi:10.1016/j.apacoust.2012.07.005 es_ES
dc.description.references Duvigneau, F., Luft, T., Hots, J., Verhey, J. L., Rottengruber, H., & Gabbert, U. (2016). Thermo-acoustic performance of full engine encapsulations – A numerical, experimental and psychoacoustic study. Applied Acoustics, 102, 79-87. doi:10.1016/j.apacoust.2015.09.012 es_ES
dc.description.references Rolland, E. O., De Domenico, F., & Hochgreb, S. (2018). Direct and Indirect Noise Generated by Entropic and Compositional Inhomogeneities. Journal of Engineering for Gas Turbines and Power, 140(8). doi:10.1115/1.4039050 es_ES
dc.description.references Crighton, D. G., Dowling, A. P., Williams, J. E. F., Heckl, M., & Leppington, F. G. (1992). Thermoacoustic Sources and Instabilities. Modern Methods in Analytical Acoustics, 378-405. doi:10.1007/978-1-4471-0399-8_13 es_ES
dc.description.references De Domenico, F., Rolland, E. O., & Hochgreb, S. (2017). Detection of direct and indirect noise generated by synthetic hot spots in a duct. Journal of Sound and Vibration, 394, 220-236. doi:10.1016/j.jsv.2017.01.004 es_ES
dc.description.references Persico, G., Gaetani, P., & Spinelli, A. (2017). Assessment of synthetic entropy waves for indirect combustion noise experiments in gas turbines. Experimental Thermal and Fluid Science, 88, 376-388. doi:10.1016/j.expthermflusci.2017.06.012 es_ES
dc.description.references Busch, S., Zha, K., Warey, A., Pesce, F., & Peterson, R. (2016). On the Reduction of Combustion Noise by a Close-Coupled Pilot Injection in a Small-Bore Direct-Injection Diesel Engine. Journal of Engineering for Gas Turbines and Power, 138(10). doi:10.1115/1.4032864 es_ES
dc.description.references Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910 es_ES
dc.description.references Kruse, A., Ruziewicz, A., Nemś, A., & Tajmar, M. (2019). Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage. Energy Conversion and Management, 181, 26-35. doi:10.1016/j.enconman.2018.11.070 es_ES
dc.description.references Priede, T. (1960). Relation between Form of Cylinder-Pressure Diagram and Noise in Diesel Engines. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 14(1), 63-97. doi:10.1243/pime_auto_1960_000_012_02 es_ES
dc.description.references Ibarra, D., Ramírez-Mendoza, R., & López, E. (2017). Noise emission from alternative fuel vehicles: Study case. Applied Acoustics, 118, 58-65. doi:10.1016/j.apacoust.2016.11.010 es_ES
dc.description.references DRAPER, C. S. (1938). Pressure Waves Accompanying Detonation in the Internal Combustion Engine. Journal of the Aeronautical Sciences, 5(6), 219-226. doi:10.2514/8.590 es_ES
dc.description.references Priede, T., & Grover, E. C. (1966). Paper 2: Noise of Industrial Diesel Engines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 181(3), 73-89. doi:10.1243/pime_conf_1966_181_062_02 es_ES
dc.description.references Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583 es_ES
dc.description.references CONVERGE 2.2 Theory Manual, CONVERGENT SCIENCE, Inc., 2015. es_ES
dc.description.references Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 es_ES
dc.description.references SMAGORINSKY, J. (1963). GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS. Monthly Weather Review, 91(3), 99-164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 es_ES
dc.description.references Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503 es_ES
dc.description.references Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578 es_ES
dc.description.references Moiz, A. A., Ameen, M. M., Lee, S.-Y., & Som, S. (2016). Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combustion and Flame, 173, 123-131. doi:10.1016/j.combustflame.2016.08.005 es_ES
dc.description.references Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x es_ES
dc.description.references Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 es_ES
dc.description.references P. J. O’Rourke, “Collective drop effects on vaporizing liquid sprays,” Ph.D. thesis, Los Alamos National Laboratory, NM, USA, 1981. es_ES
dc.description.references A. A. Amsden, P. J. O’rourke, and T. D. Butler, “KIVA-II: A computer program for chemically reactive flows with sprays,” Technical Report No. LA-11560-MS, Los Alamos National Laboratory, NM, USA, 1989. es_ES
dc.description.references Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007 es_ES
dc.description.references Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045 es_ES
dc.description.references Strahle, W. C. (1977). Combustion randomness and Diesel engine noise: Theory and initial experiments. Combustion and Flame, 28, 279-290. doi:10.1016/0010-2180(77)90033-5 es_ES
dc.description.references LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041 es_ES
dc.description.references Bagheri, S. (2013). Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726, 596-623. doi:10.1017/jfm.2013.249 es_ES
dc.description.references Caux-Brisebois, V., Steinberg, A. M., Arndt, C. M., & Meier, W. (2014). Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combustion and Flame, 161(12), 3166-3180. doi:10.1016/j.combustflame.2014.05.020 es_ES
dc.description.references Chen, H., Hung, D. L. S., Xu, M., Zhuang, H., & Yang, J. (2014). Proper orthogonal decomposition analysis of fuel spray structure variation in a spark-ignition direct-injection optical engine. Experiments in Fluids, 55(4). doi:10.1007/s00348-014-1703-y es_ES
dc.description.references Bizon, K., Continillo, G., Lombardi, S., Sementa, P., & Vaglieco, B. M. (2016). Independent component analysis of cycle resolved combustion images from a spark ignition optical engine. Combustion and Flame, 163, 258-269. doi:10.1016/j.combustflame.2015.10.002 es_ES
dc.description.references Danby, S. J., & Echekki, T. (2006). Proper orthogonal decomposition analysis of autoignition simulation data of nonhomogeneous hydrogen–air mixtures. Combustion and Flame, 144(1-2), 126-138. doi:10.1016/j.combustflame.2005.06.014 es_ES
dc.description.references Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A., & Chen, J. H. (2017). A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proceedings of the Combustion Institute, 36(3), 3567-3575. doi:10.1016/j.proci.2016.08.043 es_ES
dc.description.references Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Margot, X., & Gomez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research, 21(8), 1273-1285. doi:10.1177/1468087418803030 es_ES
dc.description.references Tissot, G., Cordier, L., Benard, N., & Noack, B. R. (2014). Model reduction using Dynamic Mode Decomposition. Comptes Rendus Mécanique, 342(6-7), 410-416. doi:10.1016/j.crme.2013.12.011 es_ES
dc.description.references Markovich, D. M., Abdurakipov, S. S., Chikishev, L. M., Dulin, V. M., & Hanjalić, K. (2014). Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Physics of Fluids, 26(6), 065109. doi:10.1063/1.4884915 es_ES
dc.description.references Chen, C., Pal, P., Ameen, M., Feng, D., & Wei, H. (2020). Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine. Applied Energy, 261, 114447. doi:10.1016/j.apenergy.2019.114447 es_ES
dc.description.references Pal, P., Kolodziej, C. P., Choi, S., Som, S., Broatch, A., Gomez-Soriano, J., … See, Y. C. (2018). Development of a Virtual CFR Engine Model for Knocking Combustion Analysis. SAE International Journal of Engines, 11(6), 1069-1082. doi:10.4271/2018-01-0187 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem