- -

Study of the engine configuration effect on the maximum achievable load in CAI using water injection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the engine configuration effect on the maximum achievable load in CAI using water injection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valero-Marco, J. es_ES
dc.contributor.author Lehrheuer, B. es_ES
dc.contributor.author López, J. Javier es_ES
dc.contributor.author Pischinger, S. es_ES
dc.date.accessioned 2021-09-03T03:34:15Z
dc.date.available 2021-09-03T03:34:15Z
dc.date.issued 2021-09-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171327
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420960858. es_ES
dc.description.abstract [EN] The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research work was part of the Research Unit (Forschergruppe) FOR 2401 Optimization based Multiscale Control for Low Temperature Combustion Engines, funded by the German Research Association (Deutsche Forschungsgemeinschaft, DFG). The support for this research is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CAI es_ES
dc.subject Controlled autoignition es_ES
dc.subject HCCI es_ES
dc.subject Gasoline engines es_ES
dc.subject Four stroke es_ES
dc.subject Water injection es_ES
dc.subject Wider operating range es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Study of the engine configuration effect on the maximum achievable load in CAI using water injection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087420960858 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//FOR 2401/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Valero-Marco, J.; Lehrheuer, B.; López, JJ.; Pischinger, S. (2021). Study of the engine configuration effect on the maximum achievable load in CAI using water injection. International Journal of Engine Research. 22(9):2945-2957. https://doi.org/10.1177/1468087420960858 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087420960858 es_ES
dc.description.upvformatpinicio 2945 es_ES
dc.description.upvformatpfin 2957 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\428526 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.description.references Onishi, S., Jo, S. H., Shoda, K., Jo, P. D., & Kato, S. (1979). Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines. SAE Technical Paper Series. doi:10.4271/790501 es_ES
dc.description.references Noguchi, M., Tanaka, Y., Tanaka, T., & Takeuchi, Y. (1979). A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products during Combustion. SAE Technical Paper Series. doi:10.4271/790840 es_ES
dc.description.references Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V., & Dryer, F. L. (1998). Oxidation of automotive primary reference fuels at elevated pressures. Symposium (International) on Combustion, 27(1), 379-387. doi:10.1016/s0082-0784(98)80426-8 es_ES
dc.description.references Tanaka, S. (2003). Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combustion and Flame, 132(1-2), 219-239. doi:10.1016/s0010-2180(02)00457-1 es_ES
dc.description.references Zhang, Y., & Zhao, H. (2014). Investigation of combustion, performance and emission characteristics of 2-stroke and 4-stroke spark ignition and CAI/HCCI operations in a DI gasoline. Applied Energy, 130, 244-255. doi:10.1016/j.apenergy.2014.05.036 es_ES
dc.description.references Zhao, H., Peng, Z., & Ladommatos, N. (2001). Understanding of controlled autoignition combustion in a four-stroke gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215(12), 1297-1310. doi:10.1243/0954407011528824 es_ES
dc.description.references Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Processing Technology, 130, 275-281. doi:10.1016/j.fuproc.2014.10.026 es_ES
dc.description.references Uyumaz, A. (2015). An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures. Energy Conversion and Management, 98, 199-207. doi:10.1016/j.enconman.2015.03.043 es_ES
dc.description.references Lee, K., Cho, S., Kim, N., & Min, K. (2015). A study on combustion control and operating range expansion of gasoline HCCI. Energy, 91, 1038-1048. doi:10.1016/j.energy.2015.08.031 es_ES
dc.description.references Jang, J., Lee, Y., Cho, C., Woo, Y., & Bae, C. (2013). Improvement of DME HCCI engine combustion by direct injection and EGR. Fuel, 113, 617-624. doi:10.1016/j.fuel.2013.06.001 es_ES
dc.description.references Dahl, D., & Denbratt, I. (2011). HCCI/SCCI Load Limits and Stoichiometric Operation in a Multicylinder Naturally Aspirated Spark Ignition Engine Operated on Gasoline and E85. International Journal of Engine Research, 12(1), 58-68. doi:10.1177/14680874jer392450 es_ES
dc.description.references Caton, P. A., Song, H. H., Kaahaaina, N. B., & Edwards, C. F. (2005). Residual-effected homogeneous charge compression ignition with delayed intake-valve closing at elevated compression ratio. International Journal of Engine Research, 6(4), 399-419. doi:10.1243/146808705x30431 es_ES
dc.description.references Yang, J. (2005). Expanding the operating range of homogeneous charge compression ignition-spark ignition dual-mode engines in the homogeneous charge compression ignition mode. International Journal of Engine Research, 6(4), 279-288. doi:10.1243/146808705x30422 es_ES
dc.description.references Yoshizawa, K., Teraji, A., Miyakubo, H., Yamaguchi, K., & Urushihara, T. (2006). Study of High Load Operation Limit Expansion for Gasoline Compression Ignition Engines. Journal of Engineering for Gas Turbines and Power, 128(2), 377-387. doi:10.1115/1.1805548 es_ES
dc.description.references Li, Y., Zhao, H., Brouzos, N., & Leach, B. (2007). Managing controlled auto-ignition combustion by injection on a direct-injection gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221(9), 1125-1137. doi:10.1243/09544070jauto372 es_ES
dc.description.references Xu, H. M., Wyszynski, M. L., Megaritis, A., Yap, D., Wilson, T., Qiao, J., … Peucheret, S. (2007). Research on expansion of operating windows of controlled homogeneous auto-ignition engines. International Journal of Engine Research, 8(1), 29-40. doi:10.1243/14680874jer01106 es_ES
dc.description.references Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703 es_ES
dc.description.references Megaritis, A., Yap, D., & Wyszynski, M. L. (2007). Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping. Energy, 32(12), 2396-2400. doi:10.1016/j.energy.2007.05.010 es_ES
dc.description.references Golzari, R., Zhao, H., Hall, J., Bassett, M., Williams, J., & Pearson, R. (2019). Impact of intake port injection of water on boosted downsized gasoline direct injection engine combustion, efficiency and emissions. International Journal of Engine Research, 22(1), 295-315. doi:10.1177/1468087419832791 es_ES
dc.description.references Hoppe, F., Thewes, M., Baumgarten, H., & Dohmen, J. (2015). Water injection for gasoline engines: Potentials, challenges, and solutions. International Journal of Engine Research, 17(1), 86-96. doi:10.1177/1468087415599867 es_ES
dc.description.references Schmitt, S., Wick, M., Wouters, C., Ruwe, L., Graf, I., Andert, J., … Kohse-Höinghaus, K. (2020). Effects of water addition on the combustion of iso-octane investigated in laminar flames, low-temperature reactors, and an HCCI engine. Combustion and Flame, 212, 433-447. doi:10.1016/j.combustflame.2019.11.023 es_ES
dc.description.references Valero-Marco, J., Lehrheuer, B., López, J. J., & Pischinger, S. (2018). Potential of water direct injection in a CAI/HCCI gasoline engine to extend the operating range towards higher loads. Fuel, 231, 317-327. doi:10.1016/j.fuel.2018.05.093 es_ES
dc.description.references Tongroon, M., & Zhao, H. (2014). Thermal and chemical effects of fuel direct injection on kinetically controlled combustion of alcohol and gasoline fuels. International Journal of Engine Research, 16(8), 982-993. doi:10.1177/1468087414561809 es_ES
dc.description.references Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 es_ES
dc.description.references Caton, J. A. (2014). Combustion phasing for maximum efficiency for conventional and high efficiency engines. Energy Conversion and Management, 77, 564-576. doi:10.1016/j.enconman.2013.09.060 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem