Silva, P.C.L., Sadaei, H.J., Ballini, R., Guimaraes, F.G.: Probabilistic forecasting with fuzzy time series. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2922152
Lorente-Leyva, L.L., et al.: Optimization of the master production scheduling in a textile industry using genetic algorithm. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 674–685. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_57
Seifert, M., Siemsen, E., Hadida, A.L., Eisingerich, A.B.: Effective judgmental forecasting in the context of fashion products. J. Oper. Manag. 36, 33–45 (2015). https://doi.org/10.1016/j.jom.2015.02.001
[+]
Silva, P.C.L., Sadaei, H.J., Ballini, R., Guimaraes, F.G.: Probabilistic forecasting with fuzzy time series. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2922152
Lorente-Leyva, L.L., et al.: Optimization of the master production scheduling in a textile industry using genetic algorithm. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 674–685. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_57
Seifert, M., Siemsen, E., Hadida, A.L., Eisingerich, A.B.: Effective judgmental forecasting in the context of fashion products. J. Oper. Manag. 36, 33–45 (2015). https://doi.org/10.1016/j.jom.2015.02.001
Tratar, L.F., Strmčnik, E.: Forecasting methods in engineering. IOP Conf. Ser. Mater. Sci. Eng. 657, 012027 (2019). https://doi.org/10.1088/1757-899X/657/1/012027
Prak, D., Teunter, R.: A general method for addressing forecasting uncertainty in inventory models. Int. J. Forecast. 35, 224–238 (2019). https://doi.org/10.1016/j.ijforecast.2017.11.004
Gaba, A., Tsetlin, I., Winkler, R.L.: Combining interval forecasts. Decis. Anal. 14, 1–20 (2017). https://doi.org/10.1287/deca.2016.0340
Zhang, B., Duan, D., Ma, Y.: Multi-product expedited ordering with demand forecast updates. Int. J. Prod. Econ. 206, 196–208 (2018). https://doi.org/10.1016/j.ijpe.2018.09.034
Januschowski, T., et al.: Criteria for classifying forecasting methods. Int. J. Forecast. 36, 167–177 (2020). https://doi.org/10.1016/j.ijforecast.2019.05.008
Box, G.E., Jenkins, G.M., Reinsel, C., Ljung, M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015)
Murray, P.W., Agard, B., Barajas, M.A.: Forecast of individual customer’s demand from a large and noisy dataset. Comput. Ind. Eng. 118, 33–43 (2018). https://doi.org/10.1016/j.cie.2018.02.007
Bruzda, J.: Quantile smoothing in supply chain and logistics forecasting. Int. J. Prod. Econ. 208, 122–139 (2019). https://doi.org/10.1016/j.ijpe.2018.11.015
Bajari, P., Nekipelov, D., Ryan, S.P., Yang, M.: Machine learning methods for demand estimation. Am. Econ. Rev. 105, 481–485 (2015). https://doi.org/10.1257/aer.p20151021
Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042
Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 362–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_31
Dudek, G.: Multilayer perceptron for short-term load forecasting: from global to local approach. Neural Comput. Appl. 32(8), 3695–3707 (2019). https://doi.org/10.1007/s00521-019-04130-y
Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. (2019). https://doi.org/10.1016/j.ijforecast.2019.07.001
Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., Wang, F.Y.: Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Trans. Comput. Soc. Syst. 6, 547–553 (2019). https://doi.org/10.1109/TCSS.2019.2914499
Zhang, X., Zheng, Y., Wang, S.: A demand forecasting method based on stochastic frontier analysis and model average: an application in air travel demand forecasting. J. Syst. Sci. Complexity 32(2), 615–633 (2019). https://doi.org/10.1007/s11424-018-7093-0
Lorente-Leyva, L.L., et al.: Artificial neural networks for urban water demand forecasting: a case study. J. Phys: Conf. Ser. 1284(1), 012004 (2019). https://doi.org/10.1088/1742-6596/1284/1/012004
Scott, S.L., Varian, H.R.: Predicting the present with Bayesian structural time series. Int. J. Math. Model. Numer. Optim. 5, 4–23 (2014). https://doi.org/10.1504/IJMMNO.2014.059942
Gallego, V., Suárez-García, P., Angulo, P., Gómez-Ullate, D.: Assessing the effect of advertising expenditures upon sales: a Bayesian structural time series model. Appl. Stoch. Model. Bus. Ind. 35, 479–491 (2019). https://doi.org/10.1002/asmb.2460
Han, S., Ko, Y., Kim, J., Hong, T.: Housing market trend forecasts through statistical comparisons based on big data analytic methods. J. Manag. Eng. 34 (2018). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000583
Lee, J.: A neural network method for nonlinear time series analysis. J. Time Ser. Econom. 11, 1–18 (2019). https://doi.org/10.1515/jtse-2016-0011
Trull, O., García-Díaz, J.C., Troncoso, A.: Initialization methods for multiple seasonal holt-winters forecasting models. Mathematics 8, 1–16 (2020). https://doi.org/10.3390/math8020268
Biau, G., Scornet, E.: A random forest guided tour. Test 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7
[-]