- -

Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quelal-Vásconez, Maribel Alexandra es_ES
dc.contributor.author Lerma-García, María Jesús es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author Arnau-Bonachera, Alberto es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.date.accessioned 2021-09-03T03:34:23Z
dc.date.available 2021-09-03T03:34:23Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171331
dc.description.abstract [EN] Variation in methylxanthines (theobromine and caffeine) and flavanols (catechin and epicatechin) was studied in a large set of cocoa powders (covering different origins, processing parameters and alkalisation levels). The content of these compounds was established by high-performance liquid chromatography (HPLC), whose results showed that the alkalisation process lowered the content of all analytes, whose loss was more evident in flavanols. Therefore, the determination of these analytes in a huge set of samples allowed not only better knowledge of the concentration variability in natural commercial cocoas from different origins, but also the understanding of the effect that industrial alkalisation has on these contents. The feasibility of reflectance near-infrared spectroscopy (NIRS) combined with partial least square (PLS) to non-destructively predict these contents, was also evaluated. All the analytes were generally well predicted, with predictions for methylxanthines (R-P(Z) 0.819-0.813 and RMSEP 0.068-0.022%, and bias 0.005 and 0.007 for theobromine and caffeine, respectively) and for flavanols (R-P(Z) 0.830-0.824; RMSEP 8.160-7.430% and bias - 1.440 and -1.034 for catechin and epicatechin, respectively). Thus NIRS could be an alternative fast reliable method for the routine assessment of these analytes in the cocoa industry. es_ES
dc.description.sponsorship The authors would like to acknowledge the financial support of the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). M. A. Quelal thanks the Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant. Olam Food Ingredients Company is aknowledged for proving part of the cocoa samples used in the study. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof LWT - Food Science & Technology (Online) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cocoa powder es_ES
dc.subject Methylxanthines es_ES
dc.subject Flavanols es_ES
dc.subject HPLC es_ES
dc.subject Near-infrared spectroscopy es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.lwt.2019.108598 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5241-2/ES/Estudio de la relación entre variables de procesado y cambios en la composición nutricional y perfil funcional del cacao en polvo. Desarrollo de una metodología predictiva aplicada al procesamiento/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat Baviera, JM.; Talens Oliag, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT - Food Science & Technology (Online). 117:1-8. https://doi.org/10.1016/j.lwt.2019.108598 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.lwt.2019.108598 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.identifier.eissn 1096-1127 es_ES
dc.relation.pasarela S\389424 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Critical Reviews in Food Science and Nutrition, 48(9), 840-857. doi:10.1080/10408390701719272 es_ES
dc.description.references Álvarez, C., Pérez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990 es_ES
dc.description.references Bázár, G., Romvári, R., Szabó, A., Somogyi, T., Éles, V., & Tsenkova, R. (2016). NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chemistry, 194, 873-880. doi:10.1016/j.foodchem.2015.08.092 es_ES
dc.description.references Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j es_ES
dc.description.references Brunetto, M. del R., Gutiérrez, L., Delgado, Y., Gallignani, M., Zambrano, A., Gómez, Á., … Romero, C. (2007). Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry, 100(2), 459-467. doi:10.1016/j.foodchem.2005.10.007 es_ES
dc.description.references Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016 es_ES
dc.description.references Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-y es_ES
dc.description.references Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133 es_ES
dc.description.references Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159 es_ES
dc.description.references Gottumukkala, R. V. S. S., Nadimpalli, N., Sukala, K., & Subbaraju, G. V. (2014). Determination of Catechin and Epicatechin Content in Chocolates by High-Performance Liquid Chromatography. International Scholarly Research Notices, 2014, 1-5. doi:10.1155/2014/628196 es_ES
dc.description.references Hue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005 es_ES
dc.description.references Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069 es_ES
dc.description.references Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012 es_ES
dc.description.references Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084 es_ES
dc.description.references Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754 es_ES
dc.description.references Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398t es_ES
dc.description.references Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010 es_ES
dc.description.references Machonis, P., Jones, M., Schaneberg, B., Kwik-Uribe, C., & Dowell, D. (2014). Method for the Determination of Catechin and Epicatechin Enantiomers in Cocoa-Based Ingredients and Products by High-Performance Liquid Chromatography: First Action 2013.04. Journal of AOAC International, 97(2), 506-509. doi:10.5740/jaoacint.13-351 es_ES
dc.description.references Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670p es_ES
dc.description.references Oñatibia-Astibia, A., Franco, R., & Martínez-Pinilla, E. (2017). Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutrition & Food Research, 61(6), 1600670. doi:10.1002/mnfr.201600670 es_ES
dc.description.references Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518-10527. doi:10.1021/jf102391q es_ES
dc.description.references Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176. doi:10.1016/j.foodcont.2016.02.048 es_ES
dc.description.references Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2019). Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis. Food Control, 99, 68-72. doi:10.1016/j.foodcont.2018.12.028 es_ES
dc.description.references Quelal-Vásconez, M. A., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2018). Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control, 92, 183-189. doi:10.1016/j.foodcont.2018.05.001 es_ES
dc.description.references Risner, C. H. (2008). Simultaneous Determination of Theobromine, (+)-Catechin, Caffeine, and (-)-Epicatechin in Standard Reference Material Baking Chocolate 2384, Cocoa, Cocoa Beans, and Cocoa Butter. Journal of Chromatographic Science, 46(10), 892-899. doi:10.1093/chromsci/46.10.892 es_ES
dc.description.references Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001 es_ES
dc.description.references Srdjenovic, B., Djordjevic-Milic, V., Grujic, N., Injac, R., & Lepojevic, Z. (2008). Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. Journal of Chromatographic Science, 46(2), 144-149. doi:10.1093/chromsci/46.2.144 es_ES
dc.description.references Sunoj, S., Igathinathane, C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Computers and Electronics in Agriculture, 124, 234-242. doi:10.1016/j.compag.2016.04.012 es_ES
dc.description.references Teye, E., Huang, X., Dai, H., & Chen, Q. (2013). Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 183-189. doi:10.1016/j.saa.2013.05.063 es_ES
dc.description.references Toledo-Martín, E., García-García, M., Font, R., Moreno-Rojas, J., Salinas-Navarro, M., Gómez, P., & del Río-Celestino, M. (2018). Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus Fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis. Molecules, 23(12), 3191. doi:10.3390/molecules23123191 es_ES
dc.description.references Toro-Uribe, S., Montero, L., López-Giraldo, L., Ibáñez, E., & Herrero, M. (2018). Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta, 1036, 204-213. doi:10.1016/j.aca.2018.06.068 es_ES
dc.description.references Van Durme, J., Ingels, I., & De Winne, A. (2016). Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chemistry, 205, 66-72. doi:10.1016/j.foodchem.2016.03.004 es_ES
dc.description.references Vergara-Barberán, M., Lerma-García, M. J., Herrero-Martínez, J. M., & Simó-Alfonso, E. F. (2015). Cultivar discrimination of Spanish olives by using direct FTIR data combined with linear discriminant analysis. European Journal of Lipid Science and Technology, 117(9), 1473-1479. doi:10.1002/ejlt.201400425 es_ES
dc.description.references Veselá, A., Barros, A. S., Synytsya, A., Delgadillo, I., Čopíková, J., & Coimbra, M. A. (2007). Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. Analytica Chimica Acta, 601(1), 77-86. doi:10.1016/j.aca.2007.08.039 es_ES
dc.description.references Wajrock, S., Antille, N., Rytz, A., Pineau, N., & Hager, C. (2008). Partitioning methods outperform hierarchical methods for clustering consumers in preference mapping. Food Quality and Preference, 19(7), 662-669. doi:10.1016/j.foodqual.2008.06.002 es_ES
dc.description.references Wold, S., Antti, H., Lindgren, F., & Öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 175-185. doi:10.1016/s0169-7439(98)00109-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem