Mostrar el registro sencillo del ítem
dc.contributor.author | Quelal-Vásconez, Maribel Alexandra | es_ES |
dc.contributor.author | Lerma-García, María Jesús | es_ES |
dc.contributor.author | Pérez-Esteve, Édgar | es_ES |
dc.contributor.author | Arnau-Bonachera, Alberto | es_ES |
dc.contributor.author | Barat Baviera, José Manuel | es_ES |
dc.contributor.author | Talens Oliag, Pau | es_ES |
dc.date.accessioned | 2021-09-03T03:34:23Z | |
dc.date.available | 2021-09-03T03:34:23Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171331 | |
dc.description.abstract | [EN] Variation in methylxanthines (theobromine and caffeine) and flavanols (catechin and epicatechin) was studied in a large set of cocoa powders (covering different origins, processing parameters and alkalisation levels). The content of these compounds was established by high-performance liquid chromatography (HPLC), whose results showed that the alkalisation process lowered the content of all analytes, whose loss was more evident in flavanols. Therefore, the determination of these analytes in a huge set of samples allowed not only better knowledge of the concentration variability in natural commercial cocoas from different origins, but also the understanding of the effect that industrial alkalisation has on these contents. The feasibility of reflectance near-infrared spectroscopy (NIRS) combined with partial least square (PLS) to non-destructively predict these contents, was also evaluated. All the analytes were generally well predicted, with predictions for methylxanthines (R-P(Z) 0.819-0.813 and RMSEP 0.068-0.022%, and bias 0.005 and 0.007 for theobromine and caffeine, respectively) and for flavanols (R-P(Z) 0.830-0.824; RMSEP 8.160-7.430% and bias - 1.440 and -1.034 for catechin and epicatechin, respectively). Thus NIRS could be an alternative fast reliable method for the routine assessment of these analytes in the cocoa industry. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the financial support of the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). M. A. Quelal thanks the Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant. Olam Food Ingredients Company is aknowledged for proving part of the cocoa samples used in the study. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | LWT - Food Science & Technology (Online) | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cocoa powder | es_ES |
dc.subject | Methylxanthines | es_ES |
dc.subject | Flavanols | es_ES |
dc.subject | HPLC | es_ES |
dc.subject | Near-infrared spectroscopy | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.lwt.2019.108598 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2016-5241-2/ES/Estudio de la relación entre variables de procesado y cambios en la composición nutricional y perfil funcional del cacao en polvo. Desarrollo de una metodología predictiva aplicada al procesamiento/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat Baviera, JM.; Talens Oliag, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT - Food Science & Technology (Online). 117:1-8. https://doi.org/10.1016/j.lwt.2019.108598 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.lwt.2019.108598 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.identifier.eissn | 1096-1127 | es_ES |
dc.relation.pasarela | S\389424 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Critical Reviews in Food Science and Nutrition, 48(9), 840-857. doi:10.1080/10408390701719272 | es_ES |
dc.description.references | Álvarez, C., Pérez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990 | es_ES |
dc.description.references | Bázár, G., Romvári, R., Szabó, A., Somogyi, T., Éles, V., & Tsenkova, R. (2016). NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chemistry, 194, 873-880. doi:10.1016/j.foodchem.2015.08.092 | es_ES |
dc.description.references | Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j | es_ES |
dc.description.references | Brunetto, M. del R., Gutiérrez, L., Delgado, Y., Gallignani, M., Zambrano, A., Gómez, Á., … Romero, C. (2007). Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry, 100(2), 459-467. doi:10.1016/j.foodchem.2005.10.007 | es_ES |
dc.description.references | Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016 | es_ES |
dc.description.references | Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-y | es_ES |
dc.description.references | Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133 | es_ES |
dc.description.references | Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159 | es_ES |
dc.description.references | Gottumukkala, R. V. S. S., Nadimpalli, N., Sukala, K., & Subbaraju, G. V. (2014). Determination of Catechin and Epicatechin Content in Chocolates by High-Performance Liquid Chromatography. International Scholarly Research Notices, 2014, 1-5. doi:10.1155/2014/628196 | es_ES |
dc.description.references | Hue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005 | es_ES |
dc.description.references | Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069 | es_ES |
dc.description.references | Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012 | es_ES |
dc.description.references | Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084 | es_ES |
dc.description.references | Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754 | es_ES |
dc.description.references | Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398t | es_ES |
dc.description.references | Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010 | es_ES |
dc.description.references | Machonis, P., Jones, M., Schaneberg, B., Kwik-Uribe, C., & Dowell, D. (2014). Method for the Determination of Catechin and Epicatechin Enantiomers in Cocoa-Based Ingredients and Products by High-Performance Liquid Chromatography: First Action 2013.04. Journal of AOAC International, 97(2), 506-509. doi:10.5740/jaoacint.13-351 | es_ES |
dc.description.references | Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670p | es_ES |
dc.description.references | Oñatibia-Astibia, A., Franco, R., & Martínez-Pinilla, E. (2017). Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutrition & Food Research, 61(6), 1600670. doi:10.1002/mnfr.201600670 | es_ES |
dc.description.references | Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518-10527. doi:10.1021/jf102391q | es_ES |
dc.description.references | Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176. doi:10.1016/j.foodcont.2016.02.048 | es_ES |
dc.description.references | Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2019). Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis. Food Control, 99, 68-72. doi:10.1016/j.foodcont.2018.12.028 | es_ES |
dc.description.references | Quelal-Vásconez, M. A., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2018). Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control, 92, 183-189. doi:10.1016/j.foodcont.2018.05.001 | es_ES |
dc.description.references | Risner, C. H. (2008). Simultaneous Determination of Theobromine, (+)-Catechin, Caffeine, and (-)-Epicatechin in Standard Reference Material Baking Chocolate 2384, Cocoa, Cocoa Beans, and Cocoa Butter. Journal of Chromatographic Science, 46(10), 892-899. doi:10.1093/chromsci/46.10.892 | es_ES |
dc.description.references | Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001 | es_ES |
dc.description.references | Srdjenovic, B., Djordjevic-Milic, V., Grujic, N., Injac, R., & Lepojevic, Z. (2008). Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. Journal of Chromatographic Science, 46(2), 144-149. doi:10.1093/chromsci/46.2.144 | es_ES |
dc.description.references | Sunoj, S., Igathinathane, C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Computers and Electronics in Agriculture, 124, 234-242. doi:10.1016/j.compag.2016.04.012 | es_ES |
dc.description.references | Teye, E., Huang, X., Dai, H., & Chen, Q. (2013). Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 183-189. doi:10.1016/j.saa.2013.05.063 | es_ES |
dc.description.references | Toledo-Martín, E., García-García, M., Font, R., Moreno-Rojas, J., Salinas-Navarro, M., Gómez, P., & del Río-Celestino, M. (2018). Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus Fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis. Molecules, 23(12), 3191. doi:10.3390/molecules23123191 | es_ES |
dc.description.references | Toro-Uribe, S., Montero, L., López-Giraldo, L., Ibáñez, E., & Herrero, M. (2018). Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta, 1036, 204-213. doi:10.1016/j.aca.2018.06.068 | es_ES |
dc.description.references | Van Durme, J., Ingels, I., & De Winne, A. (2016). Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chemistry, 205, 66-72. doi:10.1016/j.foodchem.2016.03.004 | es_ES |
dc.description.references | Vergara-Barberán, M., Lerma-García, M. J., Herrero-Martínez, J. M., & Simó-Alfonso, E. F. (2015). Cultivar discrimination of Spanish olives by using direct FTIR data combined with linear discriminant analysis. European Journal of Lipid Science and Technology, 117(9), 1473-1479. doi:10.1002/ejlt.201400425 | es_ES |
dc.description.references | Veselá, A., Barros, A. S., Synytsya, A., Delgadillo, I., Čopíková, J., & Coimbra, M. A. (2007). Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. Analytica Chimica Acta, 601(1), 77-86. doi:10.1016/j.aca.2007.08.039 | es_ES |
dc.description.references | Wajrock, S., Antille, N., Rytz, A., Pineau, N., & Hager, C. (2008). Partitioning methods outperform hierarchical methods for clustering consumers in preference mapping. Food Quality and Preference, 19(7), 662-669. doi:10.1016/j.foodqual.2008.06.002 | es_ES |
dc.description.references | Wold, S., Antti, H., Lindgren, F., & Öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 175-185. doi:10.1016/s0169-7439(98)00109-9 | es_ES |