- -

Optimized perforation schemes in railway wheels towards acoustic radiation mitigation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Optimized perforation schemes in railway wheels towards acoustic radiation mitigation

Show full item record

Gutiérrez-Gil, J.; García-Andrés, FX.; Martínez Casas, J.; Nadal, E.; Denia Guzmán, FD. (2020). Optimized perforation schemes in railway wheels towards acoustic radiation mitigation. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME. 142(4):1-14. https://doi.org/10.1115/1.4046681

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171416

Files in this item

Item Metadata

Title: Optimized perforation schemes in railway wheels towards acoustic radiation mitigation
Author: Gutiérrez-Gil, Jorge García-Andrés, Francesc Xavier Martínez Casas, José Nadal, Enrique Denia Guzmán, Francisco David
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Rolling noise emitted by railway wheels is a problem that affects human health and limits the expansion of the railway network. It is caused by the wheel vibration due to the wheelrail contact force, and it is ...[+]
Subjects: Acoustic radiation analysis , Railway wheel , Perforations , Optimization , Evolutive algorithms , Response surface , Acoustic emission , Noise control , Propagation and radiation
Copyrigths: Cerrado
Source:
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME. (issn: 1048-9002 )
DOI: 10.1115/1.4046681
Publisher version: https://doi.org/10.1115/1.4046681
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/
Thanks:
The authors gratefully acknowledge the financial support of Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion, European Regional Development Fund (project TRA2017-84701-R), and Conselleria ...[+]
Type: Artículo

References

European Enviornment Agency (EEA) , “Enviornmental Indicator Report.” 2017. https://www.eea.europa.eu/airs/2017/environment-and-health/environmental-noise”. Accessed March 2, 2020.

Guski, R., Schreckenberg, D., & Schuemer, R. (2017). WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. International Journal of Environmental Research and Public Health, 14(12), 1539. doi:10.3390/ijerph14121539

Bunn, F., & Zannin, P. H. T. (2016). Assessment of railway noise in an urban setting. Applied Acoustics, 104, 16-23. doi:10.1016/j.apacoust.2015.10.025 [+]
European Enviornment Agency (EEA) , “Enviornmental Indicator Report.” 2017. https://www.eea.europa.eu/airs/2017/environment-and-health/environmental-noise”. Accessed March 2, 2020.

Guski, R., Schreckenberg, D., & Schuemer, R. (2017). WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. International Journal of Environmental Research and Public Health, 14(12), 1539. doi:10.3390/ijerph14121539

Bunn, F., & Zannin, P. H. T. (2016). Assessment of railway noise in an urban setting. Applied Acoustics, 104, 16-23. doi:10.1016/j.apacoust.2015.10.025

Colaço, A., Alves Costa, P., Amado-Mendes, P., & Godinho, L. (2017). Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach. Journal of Vibration and Acoustics, 139(6). doi:10.1115/1.4036929

JONES, C. J. C., & THOMPSON, D. J. (2000). ROLLING NOISE GENERATED BY RAILWAY WHEELS WITH VISCO-ELASTIC LAYERS. Journal of Sound and Vibration, 231(3), 779-790. doi:10.1006/jsvi.1999.2562

Cigada, A., Manzoni, S., & Vanali, M. (2008). Vibro-acoustic characterization of railway wheels. Applied Acoustics, 69(6), 530-545. doi:10.1016/j.apacoust.2007.01.002

Thompson, D. J., & Gautier, P.-E. (2006). Review of research into wheel/rail rolling noise reduction. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(4), 385-408. doi:10.1243/0954409jrrt79

Putra, A., & Thompson, D. J. (2010). Sound radiation from perforated plates. Journal of Sound and Vibration, 329(20), 4227-4250. doi:10.1016/j.jsv.2010.04.020

Efthimeros, G. A., Photeinos, D. I., Diamantis, Z. G., & Tsahalis, D. T. (2002). Vibration/noise optimization of a FEM railway wheel model. Engineering Computations, 19(8), 922-931. doi:10.1108/02644400210450350

Nielsen, J. C. O., & Fredö, C. R. (2006). Multi-disciplinary optimization of railway wheels. Journal of Sound and Vibration, 293(3-5), 510-521. doi:10.1016/j.jsv.2005.08.063

Zhang, G., Tong, X., Lin, J., & Zhu, X. (2016). Influence of web plate holes on the radiation noise characteristics of wheels of the high speed train. Journal of Vibroengineering, 18(7), 4870-4884. doi:10.21595/jve.2016.17594

Janssens, M. H. A., Thompson, D. J., and de Beer, F. G., 2014, “TWINS Version 3.3 Track-Wheel Interaction Noise Software Theoretical Manual”, TNO Report, July.

Tran, L.-H., Hoang, T., Duhamel, D., Foret, G., Messad, S., & Loaec, A. (2018). A Fast Analytic Method to Calculate the Dynamic Response of Railways Sleepers. Journal of Vibration and Acoustics, 141(1). doi:10.1115/1.4040392

FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165

Johnson, K. L. (1985). Contact Mechanics. doi:10.1017/cbo9781139171731

Martínez-Casas, J., Di Gialleonardo, E., Bruni, S., & Baeza, L. (2014). A comprehensive model of the railway wheelset–track interaction in curves. Journal of Sound and Vibration, 333(18), 4152-4169. doi:10.1016/j.jsv.2014.03.032

Remington, P. J. (1976). Wheel/rail noise—Part IV: Rolling noise. Journal of Sound and Vibration, 46(3), 419-436. doi:10.1016/0022-460x(76)90864-6

Remington, P., & Webb, J. (1996). ESTIMATION OF WHEEL/RAIL INTERACTION FORCES IN THE CONTACT AREA DUE TO ROUGHNESS. Journal of Sound and Vibration, 193(1), 83-102. doi:10.1006/jsvi.1996.0249

Thompson, D. J. (2003). The influence of the contact zone on the excitation of wheel/rail noise. Journal of Sound and Vibration, 267(3), 523-535. doi:10.1016/s0022-460x(03)00712-0

THOMPSON, D. J., & REMINGTON, P. J. (2000). THE EFFECTS OF TRANSVERSE PROFILE ON THE EXCITATION OF WHEEL/RAIL NOISE. Journal of Sound and Vibration, 231(3), 537-548. doi:10.1006/jsvi.1999.2543

Estrada, H., Uris, A., & Meseguer, F. (2012). Acoustic radiation efficiency of a periodically corrugated rigid piston. Applied Physics Letters, 101(10), 104103. doi:10.1063/1.4748868

THOMPSON, D. J., & Jones, C. J. C. (2002). SOUND RADIATION FROM A VIBRATING RAILWAY WHEEL. Journal of Sound and Vibration, 253(2), 401-419. doi:10.1006/jsvi.2001.4061

Remington, P. J. (1976). Wheel/rail noise— Part I: Characterization of the wheel/rail dynamic system. Journal of Sound and Vibration, 46(3), 359-379. doi:10.1016/0022-460x(76)90861-0

Remington, P. J. (1987). Wheel/rail rolling noise, I: Theoretical analysis. The Journal of the Acoustical Society of America, 81(6), 1805-1823. doi:10.1121/1.394746

Davis, C. (1962). The norm of the Schur product operation. Numerische Mathematik, 4(1), 343-344. doi:10.1007/bf01386329

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record