- -

Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered

Mostrar el registro completo del ítem

Castro-López, DL.; Trujillo Guillen, M.; Berjano, E.; Romero-Mendez, R. (2020). Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered. Mathematical Biosciences and Engineering. 17(6):7980-7993. https://doi.org/10.3934/mbe.2020405

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171424

Ficheros en el ítem

Metadatos del ítem

Título: Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered
Autor: Castro-López, Dora Luz Trujillo Guillen, Macarena Berjano, Enrique Romero-Mendez, Ricardo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The objective was to explore variations of temperature distribution and coagulation zone size computed by a two-compartment radiofrequency ablation (RFA) model when including simultaneously reversible changes in the ...[+]
Palabras clave: Electrical conductivity , Irreversible changes , Radiofrequency ablation , Tumor ablation , Two-compartment model
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematical Biosciences and Engineering. (issn: 1547-1063 )
DOI: 10.3934/mbe.2020405
Versión del editor: https://doi.org/10.3934/mbe.2020405
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//446604/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
Agradecimientos:
This work was supported by the National Council of Science and Technology (CONACYT, Mexico) through a scholarship grant to Dora Luz Castro-Lopez, CVU registration No 446604; and by the Spanish Ministerio de Ciencia, ...[+]
Tipo: Artículo

References

2. D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr, J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size, <i>IEEE Trans. Biomed. Eng.</i>, 50 (2003), 493-500.

4. Z. Liu, S. M. Lobo, S. Humphries, C. Horkan, S. A. Solazzo, A. U. Hines-Peralta, et al., Radiofrequency tumor ablation: insight into improved efficacy using computer modeling, <i>AJR Am. J. Roentgenol.</i>, 184 (2005), 1347-1352.

5. S. M. Lobo, Z. J. Liu, N. C. Yu, S. Humphries, M. Ahmed, E. R. Cosman, et al., RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity, <i>Int. J. Hyperth.</i>, 21 (2005), 199-213. [+]
2. D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr, J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size, <i>IEEE Trans. Biomed. Eng.</i>, 50 (2003), 493-500.

4. Z. Liu, S. M. Lobo, S. Humphries, C. Horkan, S. A. Solazzo, A. U. Hines-Peralta, et al., Radiofrequency tumor ablation: insight into improved efficacy using computer modeling, <i>AJR Am. J. Roentgenol.</i>, 184 (2005), 1347-1352.

5. S. M. Lobo, Z. J. Liu, N. C. Yu, S. Humphries, M. Ahmed, E. R. Cosman, et al., RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity, <i>Int. J. Hyperth.</i>, 21 (2005), 199-213.

9. D. Haemmerich, D. J. Schutt, RF ablation at low frequencies for targeted tumor heating: In vitro and computational modeling results, <i>IEEE Trans. Biomed. Eng.</i>, 58 (2011), 404-410.

17. M. Pop, A. Molckovsky, L. Chin, M. C. Kolios, M. A. Jewett, M. D. Sherar, Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy, <i>Phys. Med. Biol.</i>, 48 (2003), 2509-2525.

18. U. Zurbuchen, C. Holmer, K. S. Lehmann, T. Stein, A. Roggan, C. Seifarth, et al., Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours, <i>Int. J. Hyperth.</i>, 26 (2010), 26-33.

19. E. G. Macchi, M. Gallati, G. Braschi, E. Persi, Dielectric properties of RF heated ex vivo porcine liver tissue at 480&#8201;kHz: measurements and simulations, <i>J. Phys. D Appl. Phys.</i>, 47 (2014), 485401.

21. E. Ewertowska, R. Quesada, A. Radosevic, A. Andaluz, X. Moll, F. G. Arnas, et al., A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode, <i>Int. J. Hyperth.</i>, 35 (2019), 194-204.

30. M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus, <i>Nano Today</i>, 25 (2019), 135-155.

33. A. Andreozzi, L. Brunese, M. Iasielllo, C. Tucci, G. P. Vanoli, Modeling heat transfer in tumors: A review of thermal therapies, <i>Ann. Biomed. Eng.</i>, 47 (2019), 676-693.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem