- -

Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening

Show full item record

Zarid, M.; García-Carpintero, V.; Esteras Gómez, C.; Esteva, J.; Bueso, MC.; Cañizares Sales, J.; Picó Sirvent, MB.... (2021). Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. Journal of the Science of Food and Agriculture. 101(2):754-777. https://doi.org/10.1002/jsfa.10688

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171426

Files in this item

Item Metadata

Title: Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening
Author: Zarid, Mohamed García-Carpintero, Victor Esteras Gómez, Cristina Esteva, Juan Bueso, María C. Cañizares Sales, Joaquín Picó Sirvent, María Belén Monforte Gilabert, Antonio José Fernández-Trujillo, J. Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] BACKGROUND A near-isogenic line (NIL) of melon (SC10-2) with introgression in linkage group X was studied from harvest (at firm-ripe stage of maturity) until day 18 of postharvest storage at 20.5 degrees C together ...[+]
Subjects: Cucumis melo L. , Fruit quality traits , Postharvest quality , Fruit senescence , RNA-seq , Texture
Copyrigths: Reserva de todos los derechos
Source:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.10688
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/jsfa.10688
Project ID:
info:eu-repo/grantAgreement/f SéNeCa//11784%2FPI%2F09/ES/Análisis del efecto de QTLs que inducen cambios en la textura de la pulpa y la calidad global del fruto de melón/
info:eu-repo/grantAgreement/MICINN//AGL2010-20858/ES/CALIDAD AROMATICA DEL MELON Y SU RELACION CON PRECURSORES Y EL COMPORTAMIENTO FISIOLOGICO DEL FRUTO/
Description: This is the peer reviewed version of the following article: Zarid, M., García-Carpintero, V., Esteras, C., Esteva, J., Bueso, M.C., Cañizares, J., Picó, M.B., Monforte, A.J. and Fernández-Trujillo, J.P. (2021), Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. J Sci Food Agric, 101: 754-777, which has been published in final form at https://doi.org/10.1002/jsfa.10688. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
This work was funded by grants 11784/PI/09 (Seneca Foundation, Region of Murcia) and Ministry of Economy and Innovation (AGL2010-20858). M Zarid acknowledges an UE-Erasmus predoctoral fellowship, a program coordinated ...[+]
Type: Artículo

References

Ríos, P., Argyris, J., Vegas, J., Leida, C., Kenigswald, M., Tzuri, G., … Garcia-Mas, J. (2017). ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal, 91(4), 671-683. doi:10.1111/tpj.13596

Ezura, H., & Owino, W. O. (2008). Melon, an alternative model plant for elucidating fruit ripening. Plant Science, 175(1-2), 121-129. doi:10.1016/j.plantsci.2008.02.004

Guo, X., Xu, J., Cui, X., Chen, H., & Qi, H. (2017). iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0977-7 [+]
Ríos, P., Argyris, J., Vegas, J., Leida, C., Kenigswald, M., Tzuri, G., … Garcia-Mas, J. (2017). ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal, 91(4), 671-683. doi:10.1111/tpj.13596

Ezura, H., & Owino, W. O. (2008). Melon, an alternative model plant for elucidating fruit ripening. Plant Science, 175(1-2), 121-129. doi:10.1016/j.plantsci.2008.02.004

Guo, X., Xu, J., Cui, X., Chen, H., & Qi, H. (2017). iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0977-7

Chaparro-Torres, L. A., Bueso, M. C., & Fernández-Trujillo, J. P. (2015). Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. Journal of the Science of Food and Agriculture, 96(7), 2352-2365. doi:10.1002/jsfa.7350

Pech, J. C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175(1-2), 114-120. doi:10.1016/j.plantsci.2008.01.003

Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776

González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289

Yano, R., Nonaka, S., & Ezura, H. (2017). Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.). Plant and Cell Physiology, 59(1), e4-e4. doi:10.1093/pcp/pcx193

Perpiñá, G., Esteras, C., Gibon, Y., Monforte, A. J., & Picó, B. (2016). A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0842-0

Pereira, L., Ruggieri, V., Pérez, S., Alexiou, K. G., Fernández, M., Jahrmann, T., … Garcia-Mas, J. (2018). QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1537-5

Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y

Moreno, E., Obando, J. M., Dos-Santos, N., Fernández-Trujillo, J. P., Monforte, A. J., & Garcia-Mas, J. (2007). Candidate genes and QTLs for fruit ripening and softening in melon. Theoretical and Applied Genetics, 116(4), 589-602. doi:10.1007/s00122-007-0694-y

Galpaz, N., Gonda, I., Shem‐Tov, D., Barad, O., Tzuri, G., Lev, S., … Katzir, N. (2018). Deciphering genetic factors that determine melon fruit‐quality traits using RNA ‐Seq‐based high‐resolution QTL and eQTL mapping. The Plant Journal, 94(1), 169-191. doi:10.1111/tpj.13838

Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., … Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1). doi:10.1186/s12864-015-1649-3

Zhang, H., Wang, H., Yi, H., Zhai, W., Wang, G., & Fu, Q. (2016). Transcriptome profiling of Cucumis melo fruit development and ripening. Horticulture Research, 3(1). doi:10.1038/hortres.2016.14

Eduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., … van der Knaap, E. (2007). Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. doi:10.21273/jashs.132.1.80

Nimmakayala, P., Tomason, Y. R., Abburi, V. L., Alvarado, A., Saminathan, T., Vajja, V. G., … Reddy, U. K. (2016). Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01437

Fernández-Trujillo, J. P., Fernández-Talavera, M., Ruiz-León, M., Roca, M. J., & Dos-Santos, N. (2012). AROMA VOLATILES DURING WHOLE MELON RIPENING IN A CLIMACTERIC NEAR-ISOGENIC LINE AND ITS INBRED NON-CLIMACTERIC PARENTS. Acta Horticulturae, (934), 951-957. doi:10.17660/actahortic.2012.934.127

Obando-Ulloa, J. M., Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2008). Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 49(1), 27-37. doi:10.1016/j.postharvbio.2007.11.004

Obando-Ulloa, J. M., Nicolai, B., Lammertyn, J., Bueso, M. C., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biology and Technology, 52(2), 146-155. doi:10.1016/j.postharvbio.2008.11.007

Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A. A., … Lewinsohn, E. (2010). Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany, 61(4), 1111-1123. doi:10.1093/jxb/erp390

Dos-Santos, N., Bueso, M. C., & Fernández-Trujillo, J. P. (2013). Aroma volatiles as biomarkers of textural differences at harvest in non-climacteric near-isogenic lines of melon. Food Research International, 54(2), 1801-1812. doi:10.1016/j.foodres.2013.09.031

Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., Alarcón, A. L., Eduardo, I., Arús, P., & Monforte, A. J. (2008). Identification of Melon Fruit Quality Quantitative Trait Loci Using Near-isogenic Lines. Journal of the American Society for Horticultural Science, 133(1), 139-151. doi:10.21273/jashs.133.1.139

Gomes, M. H., Fundo, J., Obando-Ulloa, J. M., Fernández-Trujillo, J. P., & Almeida, D. P. F. (2010). GENETIC BACKGROUND OF QUALITY AND CELL WALL CHANGES IN FRESH-CUT MELONS. Acta Horticulturae, (877), 1011-1018. doi:10.17660/actahortic.2010.877.136

Dos-Santos, N., Jiménez-Araujo, A., Rodríguez-Arcos, R., & Fernández-Trujillo, J. P. (2011). Cell Wall Polysaccharides of Near-Isogenic Lines of Melon (Cucumis melo L.) and Their Inbred Parentals Which Show Differential Flesh Firmness or Physiological Behavior. Journal of Agricultural and Food Chemistry, 59(14), 7773-7784. doi:10.1021/jf201155a

Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Martínez, J. A., Moreno, E., García-Mas, J., & Monforte, A. J. (2008). Climacteric and non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 50(2-3), 125-134. doi:10.1016/j.postharvbio.2008.04.007

Fernández-Trujillo, J., Zarid, M., & Bueso, M. (2018). Methodology to Remove Strong Outliers of Non-Climacteric Melon Fruit Aroma at Harvest Obtained by HS-SPME GC-MS Analysis. Separations, 5(2), 30. doi:10.3390/separations5020030

AndrewsS FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics (2010). Available:http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. doi:10.1038/nbt.3122

FuJ FrazeeAC Collado‐TorresL JaffeAEandLeekJT Ballgown: flexible isoform‐level differential expression analysis. R package version 2.12.0(2018).

Howe, E. A., Sinha, R., Schlauch, D., & Quackenbush, J. (2011). RNA-Seq analysis in MeV. Bioinformatics, 27(22), 3209-3210. doi:10.1093/bioinformatics/btr490

MEV Multi experiment viewer. TM4 MeV stand‐alone client(2018).http://mev.tm4.org/#/welcome. Available:https://sourceforge.net/projects/mev-tm4/[5 October 2018].

Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610

Paul, V., Pandey, R., & Srivastava, G. C. (2011). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. Journal of Food Science and Technology, 49(1), 1-21. doi:10.1007/s13197-011-0293-4

Perotti, V. E., Moreno, A. S., & Podestá, F. E. (2014). Physiological aspects of fruit ripening: The mitochondrial connection. Mitochondrion, 17, 1-6. doi:10.1016/j.mito.2014.04.010

ARAÚJO, W. L., NUNES-NESI, A., NIKOLOSKI, Z., SWEETLOVE, L. J., & FERNIE, A. R. (2011). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. doi:10.1111/j.1365-3040.2011.02332.x

Melo, A. M. P., Bandeiras, T. M., & Teixeira, M. (2004). New Insights into Type II NAD(P)H:Quinone Oxidoreductases. Microbiology and Molecular Biology Reviews, 68(4), 603-616. doi:10.1128/mmbr.68.4.603-616.2004

Møller, I. M. (2001). PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 561-591. doi:10.1146/annurev.arplant.52.1.561

Fatland, B. L., Ke, J., Anderson, M. D., Mentzen, W. I., Cui, L. W., Allred, C. C., … Wurtele, E. S. (2002). Molecular Characterization of a Heteromeric ATP-Citrate Lyase That Generates Cytosolic Acetyl-Coenzyme A in Arabidopsis,. Plant Physiology, 130(2), 740-756. doi:10.1104/pp.008110

Sánchez, L. B., Galperin, M. Y., & Müller, M. (2000). Acetyl-CoA Synthetase from the Amitochondriate EukaryoteGiardia lamblia Belongs to the Newly Recognized Superfamily of Acyl-CoA Synthetases (Nucleoside Diphosphate-forming). Journal of Biological Chemistry, 275(8), 5794-5803. doi:10.1074/jbc.275.8.5794

Fraser, M. E., James, M. N. G., Bridger, W. A., & Wolodko, W. T. (1999). A detailed structural description of Escherichia coli succinyl-CoA synthetase 1 1Edited by D. Rees. Journal of Molecular Biology, 285(4), 1633-1653. doi:10.1006/jmbi.1998.2324

Causse, M. (2008). Genetic background of flavour: the case of the tomato. Fruit and Vegetable Flavour, 229-253. doi:10.1533/9781845694296.4.229

Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., & Ueguchi, C. (2004). Histidine Kinase Homologs That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shoot and Root Growth in Arabidopsis. The Plant Cell, 16(6), 1365-1377. doi:10.1105/tpc.021477

Kieber, J. J. (2002). Journal of Plant Growth Regulation, 21(1), 1-2. doi:10.1007/s003440010059

Zhang, Z., Jiang, S., Wang, N., Li, M., Ji, X., Sun, S., … Chen, X. (2015). Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization. PLOS ONE, 10(12), e0146061. doi:10.1371/journal.pone.0146061

Girard, A.-L., Mounet, F., Lemaire-Chamley, M., Gaillard, C., Elmorjani, K., Vivancos, J., … Bakan, B. (2012). Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle. The Plant Cell, 24(7), 3119-3134. doi:10.1105/tpc.112.101055

Hayashi, S., Ishii, T., Matsunaga, T., Tominaga, R., Kuromori, T., Wada, T., … Hirayama, T. (2008). The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and its Homologs Play Important Roles in Cell Wall Organization. Plant and Cell Physiology, 49(10), 1522-1535. doi:10.1093/pcp/pcn120

Ge, W., Song, Y., Zhang, C., Zhang, Y., Burlingame, A. L., & Guo, Y. (2011). Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(12), 1964-1973. doi:10.1016/j.bbapap.2011.07.013

Rose, J. K. C., Hadfield, K. A., Labavitch, J. M., & Bennett, A. B. (1998). Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1. Plant Physiology, 117(2), 345-361. doi:10.1104/pp.117.2.345

Daminato, M., Guzzo, F., & Casadoro, G. (2013). A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. Journal of Experimental Botany, 64(12), 3775-3786. doi:10.1093/jxb/ert214

Lu, W., Mao, L., Chen, J., Han, X., Ren, X., Ying, T., & Luo, Z. (2018). Interaction of abscisic acid and auxin on gene expression involved in banana ripening. Acta Physiologiae Plantarum, 40(3). doi:10.1007/s11738-018-2621-z

Barry, C. S., Llop-Tous, M. I., & Grierson, D. (2000). The Regulation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase Gene Expression during the Transition from System-1 to System-2 Ethylene Synthesis in Tomato. Plant Physiology, 123(3), 979-986. doi:10.1104/pp.123.3.979

Wang, L., Zhang, X., Wang, L., Tian, Y., Jia, N., Chen, S., … Pang, X. (2017). Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Scientific Reports, 7(1). doi:10.1038/s41598-017-16851-y

Zhang, C., Hou, Y., Hao, Q., Chen, H., Chen, L., Yuan, S., … Huang, W. (2015). Genome-Wide Survey of the Soybean GATA Transcription Factor Gene Family and Expression Analysis under Low Nitrogen Stress. PLOS ONE, 10(4), e0125174. doi:10.1371/journal.pone.0125174

Sharma, M. K., Kumar, R., Solanke, A. U., Sharma, R., Tyagi, A. K., & Sharma, A. K. (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics, 284(6), 455-475. doi:10.1007/s00438-010-0580-1

Pirrello, J., Prasad, B. N., Zhang, W., Chen, K., Mila, I., Zouine, M., … Bouzayen, M. (2012). Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 12(1). doi:10.1186/1471-2229-12-190

Liu, M., Diretto, G., Pirrello, J., Roustan, J., Li, Z., Giuliano, G., … Bouzayen, M. (2014). The chimeric repressor version of an E thylene Response Factor ( ERF ) family member, Sl‐ ERF .B3 , shows contrasting effects on tomato fruit ripening. New Phytologist, 203(1), 206-218. doi:10.1111/nph.12771

Jeong, M.-J., & Shih, M.-C. (2003). Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochemical and Biophysical Research Communications, 300(2), 555-562. doi:10.1016/s0006-291x(02)02892-9

Tarze, A., Deniaud, A., Le Bras, M., Maillier, E., Molle, D., Larochette, N., … Brenner, C. (2006). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 26(18), 2606-2620. doi:10.1038/sj.onc.1210074

Zala, D., Hinckelmann, M.-V., Yu, H., Lyra da Cunha, M. M., Liot, G., Cordelières, F. P., … Saudou, F. (2013). Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport. Cell, 152(3), 479-491. doi:10.1016/j.cell.2012.12.029

YANAKA, N. (2007). Mammalian Glycerophosphodiester Phosphodiesterases. Bioscience, Biotechnology, and Biochemistry, 71(8), 1811-1818. doi:10.1271/bbb.70062

Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., & Hu, Z. (2013). A New Tomato NAC (NAM/ATAF1/2/CUC2) Transcription Factor, SlNAC4, Functions as a Positive Regulator of Fruit Ripening and Carotenoid Accumulation. Plant and Cell Physiology, 55(1), 119-135. doi:10.1093/pcp/pct162

Jaakola, L., Poole, M., Jones, M. O., Kämäräinen-Karppinen, T., Koskimäki, J. J., Hohtola, A., … Seymour, G. B. (2010). A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits    . Plant Physiology, 153(4), 1619-1629. doi:10.1104/pp.110.158279

Seymour, G. B., Ryder, C. D., Cevik, V., Hammond, J. P., Popovich, A., King, G. J., … Manning, K. (2010). A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue*. Journal of Experimental Botany, 62(3), 1179-1188. doi:10.1093/jxb/erq360

Obando-Ulloa, J. M., Ruiz, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2010). Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chemistry, 118(3), 815-822. doi:10.1016/j.foodchem.2009.05.068

Gaude, N., Nakamura, Y., Scheible, W.-R., Ohta, H., & Dörmann, P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal, 56(1), 28-39. doi:10.1111/j.1365-313x.2008.03582.x

Li, M., Qin, C., Welti, R., & Wang, X. (2005). Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiology, 140(2), 761-770. doi:10.1104/pp.105.070995

Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M. R., Ito, T., & Ohta, H. (2009). Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences, 106(49), 20978-20983. doi:10.1073/pnas.0907173106

Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., & Ohta, H. (2005). A Novel Phosphatidylcholine-hydrolyzing Phospholipase C Induced by Phosphate Starvation in Arabidopsis. Journal of Biological Chemistry, 280(9), 7469-7476. doi:10.1074/jbc.m408799200

Tang, Y., Zhang, C., Cao, S., Wang, X., & Qi, H. (2015). The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo). PLOS ONE, 10(11), e0143567. doi:10.1371/journal.pone.0143567

Zhang, C., Cao, S., Jin, Y., Ju, L., Chen, Q., Xing, Q., & Qi, H. (2017). Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Scientific Reports, 7(1). doi:10.1038/s41598-017-02559-6

Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163(3), 348-357. doi:10.1016/j.jplph.2005.11.006

Andreou, A., & Feussner, I. (2009). Lipoxygenases – Structure and reaction mechanism. Phytochemistry, 70(13-14), 1504-1510. doi:10.1016/j.phytochem.2009.05.008

Tijet, N., Schneider, C., Muller, B. L., & Brash, A. R. (2001). Biogenesis of Volatile Aldehydes from Fatty Acid Hydroperoxides: Molecular Cloning of a Hydroperoxide Lyase (CYP74C) with Specificity for both the 9- and 13-Hydroperoxides of Linoleic and Linolenic Acids. Archives of Biochemistry and Biophysics, 386(2), 281-289. doi:10.1006/abbi.2000.2218

Strassner, J., Schaller, F., Frick, U. B., Howe, G. A., Weiler, E. W., Amrhein, N., … Schaller, A. (2002). Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. The Plant Journal, 32(4), 585-601. doi:10.1046/j.1365-313x.2002.01449.x

Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178(3), 229-238. doi:10.1016/j.plantsci.2010.01.001

Wasternack, C., & Hause, B. (2002). Jasmonates and octadecanoids: Signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 165-221. doi:10.1016/s0079-6603(02)72070-9

Torrigiani, P., Fregola, F., Ziosi, V., Ruiz, K. B., Kondo, S., & Costa, G. (2012). Differential expression of allene oxide synthase (AOS), and jasmonate relationship with ethylene biosynthesis in seed and mesocarp of developing peach fruit. Postharvest Biology and Technology, 63(1), 67-73. doi:10.1016/j.postharvbio.2011.08.008

Gruer, M. J., Artymiuk, P. J., & Guest, J. R. (1997). The aconitase family: three structural variations on a common theme. Trends in Biochemical Sciences, 22(1), 3-6. doi:10.1016/s0968-0004(96)10069-4

Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., … Xie, D. (2013). Disruption of Fumarylacetoacetate Hydrolase Causes Spontaneous Cell Death under Short-Day Conditions in Arabidopsis. Plant Physiology, 162(4), 1956-1964. doi:10.1104/pp.113.216804

Freilich, S., Lev, S., Gonda, I., Reuveni, E., Portnoy, V., Oren, E., … Katzir, N. (2015). Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0449-x

Hua, C., Linling, L., Shuiyuan, C., Fuliang, C., Feng, X., Honghui, Y., & Conghua, W. (2013). Molecular Cloning and Characterization of Three Genes Encoding Dihydroflavonol-4-Reductase from Ginkgo biloba in Anthocyanin Biosynthetic Pathway. PLoS ONE, 8(8), e72017. doi:10.1371/journal.pone.0072017

Diallinas, G., & Kanellis, A. K. (1994). A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Molecular Biology, 26(1), 473-479. doi:10.1007/bf00039557

Aravind, L., & Koonin, E. V. (1999). Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 287(5), 1023-1040. doi:10.1006/jmbi.1999.2653

Chipman, D. (2001). The ACT domain family. Current Opinion in Structural Biology, 11(6), 694-700. doi:10.1016/s0959-440x(01)00272-x

Aguilar-Martínez, J. A., Poza-Carrión, C., & Cubas, P. (2007). Arabidopsis BRANCHED1Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell, 19(2), 458-472. doi:10.1105/tpc.106.048934

Hammani, K., Gobert, A., Hleibieh, K., Choulier, L., Small, I., & Giegé, P. (2011). An Arabidopsis Dual-Localized Pentatricopeptide Repeat Protein Interacts with Nuclear Proteins Involved in Gene Expression Regulation. The Plant Cell, 23(2), 730-740. doi:10.1105/tpc.110.081638

Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., … Whelan, J. (2010). TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana    . The Plant Cell, 22(12), 3921-3934. doi:10.1105/tpc.110.074518

Zhou, Y., Liu, L., Huang, W., Yuan, M., Zhou, F., Li, X., & Lin, Y. (2014). Overexpression of OsSWEET5 in Rice Causes Growth Retardation and Precocious Senescence. PLoS ONE, 9(4), e94210. doi:10.1371/journal.pone.0094210

Guo, W.-J., Nagy, R., Chen, H.-Y., Pfrunder, S., Yu, Y.-C., Santelia, D., … Martinoia, E. (2013). SWEET17, a Facilitative Transporter, Mediates Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves    . Plant Physiology, 164(2), 777-789. doi:10.1104/pp.113.232751

Shammai, A., Petreikov, M., Yeselson, Y., Faigenboim, A., Moy-Komemi, M., Cohen, S., … Schaffer, A. (2018). Natural genetic variation for expression of a SWEET transporter among wild species ofSolanum lycopersicum(tomato) determines the hexose composition of ripening tomato fruit. The Plant Journal, 96(2), 343-357. doi:10.1111/tpj.14035

Obando-Ulloa, J. M., Eduardo, I., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 121(4), 425-433. doi:10.1016/j.scienta.2009.02.023

Hancock, R. D., & Viola, R. (2005). Biosynthesis and Catabolism ofL-Ascorbic Acid in Plants. Critical Reviews in Plant Sciences, 24(3), 167-188. doi:10.1080/07352680591002165

Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., … Baldet, P. (2009). GDP-d-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. The Plant Journal, 60(3), 499-508. doi:10.1111/j.1365-313x.2009.03972.x

Reiter, W.-D., & Vanzin, G. F. (2001). Plant Molecular Biology, 47(1/2), 95-113. doi:10.1023/a:1010671129803

Pilati, S., Perazzolli, M., Malossini, A., Cestaro, A., Demattè, L., Fontana, P., … Moser, C. (2007). Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics, 8(1). doi:10.1186/1471-2164-8-428

Alexander, L. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039-2055. doi:10.1093/jxb/erf072

Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323

Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., … Garcia-Mas, J. (2015). Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 16(1). doi:10.1186/s12864-014-1196-3

Monforte, A. J., Garcia-Mas, J., & Arus, P. (2003). Genetic variability in melon based on microsatellite variation. Plant Breeding, 122(2), 153-157. doi:10.1046/j.1439-0523.2003.00848.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record