Mostrar el registro sencillo del ítem
dc.contributor.author | Zarid, Mohamed | es_ES |
dc.contributor.author | García-Carpintero, Victor | es_ES |
dc.contributor.author | Esteras Gómez, Cristina | es_ES |
dc.contributor.author | Esteva, Juan | es_ES |
dc.contributor.author | Bueso, María C. | es_ES |
dc.contributor.author | Cañizares Sales, Joaquín | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.contributor.author | Fernández-Trujillo, J. Pablo | es_ES |
dc.date.accessioned | 2021-09-04T03:41:15Z | |
dc.date.available | 2021-09-04T03:41:15Z | |
dc.date.issued | 2021-01-30 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171426 | |
dc.description | This is the peer reviewed version of the following article: Zarid, M., García-Carpintero, V., Esteras, C., Esteva, J., Bueso, M.C., Cañizares, J., Picó, M.B., Monforte, A.J. and Fernández-Trujillo, J.P. (2021), Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. J Sci Food Agric, 101: 754-777, which has been published in final form at https://doi.org/10.1002/jsfa.10688. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] BACKGROUND A near-isogenic line (NIL) of melon (SC10-2) with introgression in linkage group X was studied from harvest (at firm-ripe stage of maturity) until day 18 of postharvest storage at 20.5 degrees C together with its parental control ('Piel de Sapo', PS). RESULTS SC10-2 showed higher flesh firmness and whole fruit hardness but lower juiciness than its parental. SC10-2 showed a decrease in respiration rate accompanied by a decrease in ethylene production during ripening, both of which fell to a greater extent than in PS. The introgression affected 11 volatile organic compounds (VOCs), the levels of which during ripening were generally higher in SC10-2 than in PS. Transcriptomic analysis from RNA-Seq revealed differentially expressed genes (DEGs) associated with the effects studied. For example, 909 DEGs were exclusive to the introgression, and only 23 DEGs were exclusive to postharvest ripening time. Major functions of the DEGs associated with introgression or ripening time were identified by cluster analysis. About 37 genes directly and/or indirectly affected the delay in ripening of SC10-2 compared with PS in general and, more particularly, the physiological and quality traits measured and, probably, the differential non-climacteric response. Of the former genes, we studied in more detail at least five that mapped in the introgression in linkage group (LG) X, and 32 outside it. CONCLUSION There is an apparent control of textural changes, VOCs and fruit ripening by an expression quantitative trait locus located in LG X together with a direct control on them due to genes presented in the introgression (CmTrpD,CmNADH1,CmTCP15,CmGDSL esterase/lipase, andCmHK4-like) and CmNAC18. | es_ES |
dc.description.sponsorship | This work was funded by grants 11784/PI/09 (Seneca Foundation, Region of Murcia) and Ministry of Economy and Innovation (AGL2010-20858). M Zarid acknowledges an UE-Erasmus predoctoral fellowship, a program coordinated by the University of Murcia in the framework of CMN. Thanks are due to Semillas Fitó SA (Barcelona, Spain), for providing seeds of PS melons and IRTACRAG for the seeds of SC10-2. We acknowledge the assistance of P Varó and his team in CIFEA-Torre Pacheco for crop management, to N Dos-Santos, M Medina, M García-Gutiérrez, A Hakmaoui, E Cuadros, I Canales and AA Escudero (UPCT) for sampling and technical assistance, to SAIT-UPCT for GC-MS analysis, to AG Sifres (COMAV) for RNA extraction, and to CNAG (Barcelona) for professional assistance in RNA-Seq. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cucumis melo L. | es_ES |
dc.subject | Fruit quality traits | es_ES |
dc.subject | Postharvest quality | es_ES |
dc.subject | Fruit senescence | es_ES |
dc.subject | RNA-seq | es_ES |
dc.subject | Texture | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.10688 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//11784%2FPI%2F09/ES/Análisis del efecto de QTLs que inducen cambios en la textura de la pulpa y la calidad global del fruto de melón/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-20858/ES/CALIDAD AROMATICA DEL MELON Y SU RELACION CON PRECURSORES Y EL COMPORTAMIENTO FISIOLOGICO DEL FRUTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Zarid, M.; García-Carpintero, V.; Esteras Gómez, C.; Esteva, J.; Bueso, MC.; Cañizares Sales, J.; Picó Sirvent, MB.... (2021). Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. Journal of the Science of Food and Agriculture. 101(2):754-777. https://doi.org/10.1002/jsfa.10688 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.10688 | es_ES |
dc.description.upvformatpinicio | 754 | es_ES |
dc.description.upvformatpfin | 777 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 101 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 32713003 | es_ES |
dc.relation.pasarela | S\416223 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Ríos, P., Argyris, J., Vegas, J., Leida, C., Kenigswald, M., Tzuri, G., … Garcia-Mas, J. (2017). ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal, 91(4), 671-683. doi:10.1111/tpj.13596 | es_ES |
dc.description.references | Ezura, H., & Owino, W. O. (2008). Melon, an alternative model plant for elucidating fruit ripening. Plant Science, 175(1-2), 121-129. doi:10.1016/j.plantsci.2008.02.004 | es_ES |
dc.description.references | Guo, X., Xu, J., Cui, X., Chen, H., & Qi, H. (2017). iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0977-7 | es_ES |
dc.description.references | Chaparro-Torres, L. A., Bueso, M. C., & Fernández-Trujillo, J. P. (2015). Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. Journal of the Science of Food and Agriculture, 96(7), 2352-2365. doi:10.1002/jsfa.7350 | es_ES |
dc.description.references | Pech, J. C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175(1-2), 114-120. doi:10.1016/j.plantsci.2008.01.003 | es_ES |
dc.description.references | Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776 | es_ES |
dc.description.references | González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289 | es_ES |
dc.description.references | Yano, R., Nonaka, S., & Ezura, H. (2017). Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.). Plant and Cell Physiology, 59(1), e4-e4. doi:10.1093/pcp/pcx193 | es_ES |
dc.description.references | Perpiñá, G., Esteras, C., Gibon, Y., Monforte, A. J., & Picó, B. (2016). A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0842-0 | es_ES |
dc.description.references | Pereira, L., Ruggieri, V., Pérez, S., Alexiou, K. G., Fernández, M., Jahrmann, T., … Garcia-Mas, J. (2018). QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1537-5 | es_ES |
dc.description.references | Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y | es_ES |
dc.description.references | Moreno, E., Obando, J. M., Dos-Santos, N., Fernández-Trujillo, J. P., Monforte, A. J., & Garcia-Mas, J. (2007). Candidate genes and QTLs for fruit ripening and softening in melon. Theoretical and Applied Genetics, 116(4), 589-602. doi:10.1007/s00122-007-0694-y | es_ES |
dc.description.references | Galpaz, N., Gonda, I., Shem‐Tov, D., Barad, O., Tzuri, G., Lev, S., … Katzir, N. (2018). Deciphering genetic factors that determine melon fruit‐quality traits using RNA ‐Seq‐based high‐resolution QTL and eQTL mapping. The Plant Journal, 94(1), 169-191. doi:10.1111/tpj.13838 | es_ES |
dc.description.references | Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., … Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1). doi:10.1186/s12864-015-1649-3 | es_ES |
dc.description.references | Zhang, H., Wang, H., Yi, H., Zhai, W., Wang, G., & Fu, Q. (2016). Transcriptome profiling of Cucumis melo fruit development and ripening. Horticulture Research, 3(1). doi:10.1038/hortres.2016.14 | es_ES |
dc.description.references | Eduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., … van der Knaap, E. (2007). Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. doi:10.21273/jashs.132.1.80 | es_ES |
dc.description.references | Nimmakayala, P., Tomason, Y. R., Abburi, V. L., Alvarado, A., Saminathan, T., Vajja, V. G., … Reddy, U. K. (2016). Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01437 | es_ES |
dc.description.references | Fernández-Trujillo, J. P., Fernández-Talavera, M., Ruiz-León, M., Roca, M. J., & Dos-Santos, N. (2012). AROMA VOLATILES DURING WHOLE MELON RIPENING IN A CLIMACTERIC NEAR-ISOGENIC LINE AND ITS INBRED NON-CLIMACTERIC PARENTS. Acta Horticulturae, (934), 951-957. doi:10.17660/actahortic.2012.934.127 | es_ES |
dc.description.references | Obando-Ulloa, J. M., Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2008). Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 49(1), 27-37. doi:10.1016/j.postharvbio.2007.11.004 | es_ES |
dc.description.references | Obando-Ulloa, J. M., Nicolai, B., Lammertyn, J., Bueso, M. C., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biology and Technology, 52(2), 146-155. doi:10.1016/j.postharvbio.2008.11.007 | es_ES |
dc.description.references | Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A. A., … Lewinsohn, E. (2010). Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany, 61(4), 1111-1123. doi:10.1093/jxb/erp390 | es_ES |
dc.description.references | Dos-Santos, N., Bueso, M. C., & Fernández-Trujillo, J. P. (2013). Aroma volatiles as biomarkers of textural differences at harvest in non-climacteric near-isogenic lines of melon. Food Research International, 54(2), 1801-1812. doi:10.1016/j.foodres.2013.09.031 | es_ES |
dc.description.references | Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., Alarcón, A. L., Eduardo, I., Arús, P., & Monforte, A. J. (2008). Identification of Melon Fruit Quality Quantitative Trait Loci Using Near-isogenic Lines. Journal of the American Society for Horticultural Science, 133(1), 139-151. doi:10.21273/jashs.133.1.139 | es_ES |
dc.description.references | Gomes, M. H., Fundo, J., Obando-Ulloa, J. M., Fernández-Trujillo, J. P., & Almeida, D. P. F. (2010). GENETIC BACKGROUND OF QUALITY AND CELL WALL CHANGES IN FRESH-CUT MELONS. Acta Horticulturae, (877), 1011-1018. doi:10.17660/actahortic.2010.877.136 | es_ES |
dc.description.references | Dos-Santos, N., Jiménez-Araujo, A., Rodríguez-Arcos, R., & Fernández-Trujillo, J. P. (2011). Cell Wall Polysaccharides of Near-Isogenic Lines of Melon (Cucumis melo L.) and Their Inbred Parentals Which Show Differential Flesh Firmness or Physiological Behavior. Journal of Agricultural and Food Chemistry, 59(14), 7773-7784. doi:10.1021/jf201155a | es_ES |
dc.description.references | Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Martínez, J. A., Moreno, E., García-Mas, J., & Monforte, A. J. (2008). Climacteric and non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 50(2-3), 125-134. doi:10.1016/j.postharvbio.2008.04.007 | es_ES |
dc.description.references | Fernández-Trujillo, J., Zarid, M., & Bueso, M. (2018). Methodology to Remove Strong Outliers of Non-Climacteric Melon Fruit Aroma at Harvest Obtained by HS-SPME GC-MS Analysis. Separations, 5(2), 30. doi:10.3390/separations5020030 | es_ES |
dc.description.references | AndrewsS FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics (2010). Available:http://www.bioinformatics.babraham.ac.uk/projects/fastqc. | es_ES |
dc.description.references | Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317 | es_ES |
dc.description.references | Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. doi:10.1038/nbt.3122 | es_ES |
dc.description.references | FuJ FrazeeAC Collado‐TorresL JaffeAEandLeekJT Ballgown: flexible isoform‐level differential expression analysis. R package version 2.12.0(2018). | es_ES |
dc.description.references | Howe, E. A., Sinha, R., Schlauch, D., & Quackenbush, J. (2011). RNA-Seq analysis in MeV. Bioinformatics, 27(22), 3209-3210. doi:10.1093/bioinformatics/btr490 | es_ES |
dc.description.references | MEV Multi experiment viewer. TM4 MeV stand‐alone client(2018).http://mev.tm4.org/#/welcome. Available:https://sourceforge.net/projects/mev-tm4/[5 October 2018]. | es_ES |
dc.description.references | Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610 | es_ES |
dc.description.references | Paul, V., Pandey, R., & Srivastava, G. C. (2011). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. Journal of Food Science and Technology, 49(1), 1-21. doi:10.1007/s13197-011-0293-4 | es_ES |
dc.description.references | Perotti, V. E., Moreno, A. S., & Podestá, F. E. (2014). Physiological aspects of fruit ripening: The mitochondrial connection. Mitochondrion, 17, 1-6. doi:10.1016/j.mito.2014.04.010 | es_ES |
dc.description.references | ARAÚJO, W. L., NUNES-NESI, A., NIKOLOSKI, Z., SWEETLOVE, L. J., & FERNIE, A. R. (2011). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. doi:10.1111/j.1365-3040.2011.02332.x | es_ES |
dc.description.references | Melo, A. M. P., Bandeiras, T. M., & Teixeira, M. (2004). New Insights into Type II NAD(P)H:Quinone Oxidoreductases. Microbiology and Molecular Biology Reviews, 68(4), 603-616. doi:10.1128/mmbr.68.4.603-616.2004 | es_ES |
dc.description.references | Møller, I. M. (2001). PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 561-591. doi:10.1146/annurev.arplant.52.1.561 | es_ES |
dc.description.references | Fatland, B. L., Ke, J., Anderson, M. D., Mentzen, W. I., Cui, L. W., Allred, C. C., … Wurtele, E. S. (2002). Molecular Characterization of a Heteromeric ATP-Citrate Lyase That Generates Cytosolic Acetyl-Coenzyme A in Arabidopsis,. Plant Physiology, 130(2), 740-756. doi:10.1104/pp.008110 | es_ES |
dc.description.references | Sánchez, L. B., Galperin, M. Y., & Müller, M. (2000). Acetyl-CoA Synthetase from the Amitochondriate EukaryoteGiardia lamblia Belongs to the Newly Recognized Superfamily of Acyl-CoA Synthetases (Nucleoside Diphosphate-forming). Journal of Biological Chemistry, 275(8), 5794-5803. doi:10.1074/jbc.275.8.5794 | es_ES |
dc.description.references | Fraser, M. E., James, M. N. G., Bridger, W. A., & Wolodko, W. T. (1999). A detailed structural description of Escherichia coli succinyl-CoA synthetase 1 1Edited by D. Rees. Journal of Molecular Biology, 285(4), 1633-1653. doi:10.1006/jmbi.1998.2324 | es_ES |
dc.description.references | Causse, M. (2008). Genetic background of flavour: the case of the tomato. Fruit and Vegetable Flavour, 229-253. doi:10.1533/9781845694296.4.229 | es_ES |
dc.description.references | Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., & Ueguchi, C. (2004). Histidine Kinase Homologs That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shoot and Root Growth in Arabidopsis. The Plant Cell, 16(6), 1365-1377. doi:10.1105/tpc.021477 | es_ES |
dc.description.references | Kieber, J. J. (2002). Journal of Plant Growth Regulation, 21(1), 1-2. doi:10.1007/s003440010059 | es_ES |
dc.description.references | Zhang, Z., Jiang, S., Wang, N., Li, M., Ji, X., Sun, S., … Chen, X. (2015). Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization. PLOS ONE, 10(12), e0146061. doi:10.1371/journal.pone.0146061 | es_ES |
dc.description.references | Girard, A.-L., Mounet, F., Lemaire-Chamley, M., Gaillard, C., Elmorjani, K., Vivancos, J., … Bakan, B. (2012). Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle. The Plant Cell, 24(7), 3119-3134. doi:10.1105/tpc.112.101055 | es_ES |
dc.description.references | Hayashi, S., Ishii, T., Matsunaga, T., Tominaga, R., Kuromori, T., Wada, T., … Hirayama, T. (2008). The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and its Homologs Play Important Roles in Cell Wall Organization. Plant and Cell Physiology, 49(10), 1522-1535. doi:10.1093/pcp/pcn120 | es_ES |
dc.description.references | Ge, W., Song, Y., Zhang, C., Zhang, Y., Burlingame, A. L., & Guo, Y. (2011). Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(12), 1964-1973. doi:10.1016/j.bbapap.2011.07.013 | es_ES |
dc.description.references | Rose, J. K. C., Hadfield, K. A., Labavitch, J. M., & Bennett, A. B. (1998). Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1. Plant Physiology, 117(2), 345-361. doi:10.1104/pp.117.2.345 | es_ES |
dc.description.references | Daminato, M., Guzzo, F., & Casadoro, G. (2013). A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. Journal of Experimental Botany, 64(12), 3775-3786. doi:10.1093/jxb/ert214 | es_ES |
dc.description.references | Lu, W., Mao, L., Chen, J., Han, X., Ren, X., Ying, T., & Luo, Z. (2018). Interaction of abscisic acid and auxin on gene expression involved in banana ripening. Acta Physiologiae Plantarum, 40(3). doi:10.1007/s11738-018-2621-z | es_ES |
dc.description.references | Barry, C. S., Llop-Tous, M. I., & Grierson, D. (2000). The Regulation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase Gene Expression during the Transition from System-1 to System-2 Ethylene Synthesis in Tomato. Plant Physiology, 123(3), 979-986. doi:10.1104/pp.123.3.979 | es_ES |
dc.description.references | Wang, L., Zhang, X., Wang, L., Tian, Y., Jia, N., Chen, S., … Pang, X. (2017). Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Scientific Reports, 7(1). doi:10.1038/s41598-017-16851-y | es_ES |
dc.description.references | Zhang, C., Hou, Y., Hao, Q., Chen, H., Chen, L., Yuan, S., … Huang, W. (2015). Genome-Wide Survey of the Soybean GATA Transcription Factor Gene Family and Expression Analysis under Low Nitrogen Stress. PLOS ONE, 10(4), e0125174. doi:10.1371/journal.pone.0125174 | es_ES |
dc.description.references | Sharma, M. K., Kumar, R., Solanke, A. U., Sharma, R., Tyagi, A. K., & Sharma, A. K. (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics, 284(6), 455-475. doi:10.1007/s00438-010-0580-1 | es_ES |
dc.description.references | Pirrello, J., Prasad, B. N., Zhang, W., Chen, K., Mila, I., Zouine, M., … Bouzayen, M. (2012). Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 12(1). doi:10.1186/1471-2229-12-190 | es_ES |
dc.description.references | Liu, M., Diretto, G., Pirrello, J., Roustan, J., Li, Z., Giuliano, G., … Bouzayen, M. (2014). The chimeric repressor version of an E thylene Response Factor ( ERF ) family member, Sl‐ ERF .B3 , shows contrasting effects on tomato fruit ripening. New Phytologist, 203(1), 206-218. doi:10.1111/nph.12771 | es_ES |
dc.description.references | Jeong, M.-J., & Shih, M.-C. (2003). Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochemical and Biophysical Research Communications, 300(2), 555-562. doi:10.1016/s0006-291x(02)02892-9 | es_ES |
dc.description.references | Tarze, A., Deniaud, A., Le Bras, M., Maillier, E., Molle, D., Larochette, N., … Brenner, C. (2006). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 26(18), 2606-2620. doi:10.1038/sj.onc.1210074 | es_ES |
dc.description.references | Zala, D., Hinckelmann, M.-V., Yu, H., Lyra da Cunha, M. M., Liot, G., Cordelières, F. P., … Saudou, F. (2013). Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport. Cell, 152(3), 479-491. doi:10.1016/j.cell.2012.12.029 | es_ES |
dc.description.references | YANAKA, N. (2007). Mammalian Glycerophosphodiester Phosphodiesterases. Bioscience, Biotechnology, and Biochemistry, 71(8), 1811-1818. doi:10.1271/bbb.70062 | es_ES |
dc.description.references | Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., & Hu, Z. (2013). A New Tomato NAC (NAM/ATAF1/2/CUC2) Transcription Factor, SlNAC4, Functions as a Positive Regulator of Fruit Ripening and Carotenoid Accumulation. Plant and Cell Physiology, 55(1), 119-135. doi:10.1093/pcp/pct162 | es_ES |
dc.description.references | Jaakola, L., Poole, M., Jones, M. O., Kämäräinen-Karppinen, T., Koskimäki, J. J., Hohtola, A., … Seymour, G. B. (2010). A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits . Plant Physiology, 153(4), 1619-1629. doi:10.1104/pp.110.158279 | es_ES |
dc.description.references | Seymour, G. B., Ryder, C. D., Cevik, V., Hammond, J. P., Popovich, A., King, G. J., … Manning, K. (2010). A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue*. Journal of Experimental Botany, 62(3), 1179-1188. doi:10.1093/jxb/erq360 | es_ES |
dc.description.references | Obando-Ulloa, J. M., Ruiz, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2010). Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chemistry, 118(3), 815-822. doi:10.1016/j.foodchem.2009.05.068 | es_ES |
dc.description.references | Gaude, N., Nakamura, Y., Scheible, W.-R., Ohta, H., & Dörmann, P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal, 56(1), 28-39. doi:10.1111/j.1365-313x.2008.03582.x | es_ES |
dc.description.references | Li, M., Qin, C., Welti, R., & Wang, X. (2005). Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiology, 140(2), 761-770. doi:10.1104/pp.105.070995 | es_ES |
dc.description.references | Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M. R., Ito, T., & Ohta, H. (2009). Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences, 106(49), 20978-20983. doi:10.1073/pnas.0907173106 | es_ES |
dc.description.references | Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., & Ohta, H. (2005). A Novel Phosphatidylcholine-hydrolyzing Phospholipase C Induced by Phosphate Starvation in Arabidopsis. Journal of Biological Chemistry, 280(9), 7469-7476. doi:10.1074/jbc.m408799200 | es_ES |
dc.description.references | Tang, Y., Zhang, C., Cao, S., Wang, X., & Qi, H. (2015). The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo). PLOS ONE, 10(11), e0143567. doi:10.1371/journal.pone.0143567 | es_ES |
dc.description.references | Zhang, C., Cao, S., Jin, Y., Ju, L., Chen, Q., Xing, Q., & Qi, H. (2017). Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Scientific Reports, 7(1). doi:10.1038/s41598-017-02559-6 | es_ES |
dc.description.references | Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163(3), 348-357. doi:10.1016/j.jplph.2005.11.006 | es_ES |
dc.description.references | Andreou, A., & Feussner, I. (2009). Lipoxygenases – Structure and reaction mechanism. Phytochemistry, 70(13-14), 1504-1510. doi:10.1016/j.phytochem.2009.05.008 | es_ES |
dc.description.references | Tijet, N., Schneider, C., Muller, B. L., & Brash, A. R. (2001). Biogenesis of Volatile Aldehydes from Fatty Acid Hydroperoxides: Molecular Cloning of a Hydroperoxide Lyase (CYP74C) with Specificity for both the 9- and 13-Hydroperoxides of Linoleic and Linolenic Acids. Archives of Biochemistry and Biophysics, 386(2), 281-289. doi:10.1006/abbi.2000.2218 | es_ES |
dc.description.references | Strassner, J., Schaller, F., Frick, U. B., Howe, G. A., Weiler, E. W., Amrhein, N., … Schaller, A. (2002). Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. The Plant Journal, 32(4), 585-601. doi:10.1046/j.1365-313x.2002.01449.x | es_ES |
dc.description.references | Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178(3), 229-238. doi:10.1016/j.plantsci.2010.01.001 | es_ES |
dc.description.references | Wasternack, C., & Hause, B. (2002). Jasmonates and octadecanoids: Signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 165-221. doi:10.1016/s0079-6603(02)72070-9 | es_ES |
dc.description.references | Torrigiani, P., Fregola, F., Ziosi, V., Ruiz, K. B., Kondo, S., & Costa, G. (2012). Differential expression of allene oxide synthase (AOS), and jasmonate relationship with ethylene biosynthesis in seed and mesocarp of developing peach fruit. Postharvest Biology and Technology, 63(1), 67-73. doi:10.1016/j.postharvbio.2011.08.008 | es_ES |
dc.description.references | Gruer, M. J., Artymiuk, P. J., & Guest, J. R. (1997). The aconitase family: three structural variations on a common theme. Trends in Biochemical Sciences, 22(1), 3-6. doi:10.1016/s0968-0004(96)10069-4 | es_ES |
dc.description.references | Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., … Xie, D. (2013). Disruption of Fumarylacetoacetate Hydrolase Causes Spontaneous Cell Death under Short-Day Conditions in Arabidopsis. Plant Physiology, 162(4), 1956-1964. doi:10.1104/pp.113.216804 | es_ES |
dc.description.references | Freilich, S., Lev, S., Gonda, I., Reuveni, E., Portnoy, V., Oren, E., … Katzir, N. (2015). Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0449-x | es_ES |
dc.description.references | Hua, C., Linling, L., Shuiyuan, C., Fuliang, C., Feng, X., Honghui, Y., & Conghua, W. (2013). Molecular Cloning and Characterization of Three Genes Encoding Dihydroflavonol-4-Reductase from Ginkgo biloba in Anthocyanin Biosynthetic Pathway. PLoS ONE, 8(8), e72017. doi:10.1371/journal.pone.0072017 | es_ES |
dc.description.references | Diallinas, G., & Kanellis, A. K. (1994). A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Molecular Biology, 26(1), 473-479. doi:10.1007/bf00039557 | es_ES |
dc.description.references | Aravind, L., & Koonin, E. V. (1999). Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 287(5), 1023-1040. doi:10.1006/jmbi.1999.2653 | es_ES |
dc.description.references | Chipman, D. (2001). The ACT domain family. Current Opinion in Structural Biology, 11(6), 694-700. doi:10.1016/s0959-440x(01)00272-x | es_ES |
dc.description.references | Aguilar-Martínez, J. A., Poza-Carrión, C., & Cubas, P. (2007). Arabidopsis BRANCHED1Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell, 19(2), 458-472. doi:10.1105/tpc.106.048934 | es_ES |
dc.description.references | Hammani, K., Gobert, A., Hleibieh, K., Choulier, L., Small, I., & Giegé, P. (2011). An Arabidopsis Dual-Localized Pentatricopeptide Repeat Protein Interacts with Nuclear Proteins Involved in Gene Expression Regulation. The Plant Cell, 23(2), 730-740. doi:10.1105/tpc.110.081638 | es_ES |
dc.description.references | Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., … Whelan, J. (2010). TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana . The Plant Cell, 22(12), 3921-3934. doi:10.1105/tpc.110.074518 | es_ES |
dc.description.references | Zhou, Y., Liu, L., Huang, W., Yuan, M., Zhou, F., Li, X., & Lin, Y. (2014). Overexpression of OsSWEET5 in Rice Causes Growth Retardation and Precocious Senescence. PLoS ONE, 9(4), e94210. doi:10.1371/journal.pone.0094210 | es_ES |
dc.description.references | Guo, W.-J., Nagy, R., Chen, H.-Y., Pfrunder, S., Yu, Y.-C., Santelia, D., … Martinoia, E. (2013). SWEET17, a Facilitative Transporter, Mediates Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves . Plant Physiology, 164(2), 777-789. doi:10.1104/pp.113.232751 | es_ES |
dc.description.references | Shammai, A., Petreikov, M., Yeselson, Y., Faigenboim, A., Moy-Komemi, M., Cohen, S., … Schaffer, A. (2018). Natural genetic variation for expression of a SWEET transporter among wild species ofSolanum lycopersicum(tomato) determines the hexose composition of ripening tomato fruit. The Plant Journal, 96(2), 343-357. doi:10.1111/tpj.14035 | es_ES |
dc.description.references | Obando-Ulloa, J. M., Eduardo, I., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 121(4), 425-433. doi:10.1016/j.scienta.2009.02.023 | es_ES |
dc.description.references | Hancock, R. D., & Viola, R. (2005). Biosynthesis and Catabolism ofL-Ascorbic Acid in Plants. Critical Reviews in Plant Sciences, 24(3), 167-188. doi:10.1080/07352680591002165 | es_ES |
dc.description.references | Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., … Baldet, P. (2009). GDP-d-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. The Plant Journal, 60(3), 499-508. doi:10.1111/j.1365-313x.2009.03972.x | es_ES |
dc.description.references | Reiter, W.-D., & Vanzin, G. F. (2001). Plant Molecular Biology, 47(1/2), 95-113. doi:10.1023/a:1010671129803 | es_ES |
dc.description.references | Pilati, S., Perazzolli, M., Malossini, A., Cestaro, A., Demattè, L., Fontana, P., … Moser, C. (2007). Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics, 8(1). doi:10.1186/1471-2164-8-428 | es_ES |
dc.description.references | Alexander, L. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039-2055. doi:10.1093/jxb/erf072 | es_ES |
dc.description.references | Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323 | es_ES |
dc.description.references | Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., … Garcia-Mas, J. (2015). Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 16(1). doi:10.1186/s12864-014-1196-3 | es_ES |
dc.description.references | Monforte, A. J., Garcia-Mas, J., & Arus, P. (2003). Genetic variability in melon based on microsatellite variation. Plant Breeding, 122(2), 153-157. doi:10.1046/j.1439-0523.2003.00848.x | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |