Aguilar-Martínez, J. A., Poza-Carrión, C., & Cubas, P. (2007). Arabidopsis BRANCHED1Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell, 19(2), 458-472. doi:10.1105/tpc.106.048934
Almeida, J., Rocheta, M., & Galego, L. (1997). Genetic control of flower shape in Antirrhinum majus. Development, 124(7), 1387-1392. doi:10.1242/dev.124.7.1387
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2
[+]
Aguilar-Martínez, J. A., Poza-Carrión, C., & Cubas, P. (2007). Arabidopsis BRANCHED1Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell, 19(2), 458-472. doi:10.1105/tpc.106.048934
Almeida, J., Rocheta, M., & Galego, L. (1997). Genetic control of flower shape in Antirrhinum majus. Development, 124(7), 1387-1392. doi:10.1242/dev.124.7.1387
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2
Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M., Yanofsky, M. F., & Schmidt, R. J. (2000). Molecular and Genetic Analyses of the Silky1 Gene Reveal Conservation in Floral Organ Specification between Eudicots and Monocots. Molecular Cell, 5(3), 569-579. doi:10.1016/s1097-2765(00)80450-5
Ballester, P., Navarrete-Gómez, M., Carbonero, P., Oñate-Sánchez, L., & Ferrándiz, C. (2015). Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiologia Plantarum, 155(1), 21-32. doi:10.1111/ppl.12327
Bartlett, M. E., & Specht, C. D. (2011). Changes in expression pattern of the teosinte branched1-
like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany, 98(2), 227-243. doi:10.3732/ajb.1000246
Bliss, B. J., Wanke, S., Barakat, A., Ayyampalayam, S., Wickett, N., Wall, P. K., … dePamphilis, C. W. (2013). Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology, 13(1), 13. doi:10.1186/1471-2229-13-13
Busch, A., & Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences, 104(42), 16714-16719. doi:10.1073/pnas.0705338104
Citerne, H. L., Reyes, E., Le Guilloux, M., Delannoy, E., Simonnet, F., Sauquet, H., … Damerval, C. (2016). Characterization ofCYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany, 119(3), 367-378. doi:10.1093/aob/mcw219
Corley, S. B., Carpenter, R., Copsey, L., & Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences, 102(14), 5068-5073. doi:10.1073/pnas.0501340102
Crawford, B. C. W., Nath, U., Carpenter, R., & Coen, E. S. (2004). CINCINNATA Controls Both Cell Differentiation and Growth in Petal Lobes and Leaves of Antirrhinum. Plant Physiology, 135(1), 244-253. doi:10.1104/pp.103.036368
Cubas, P. (2002). Role of TCP genes in the evolution of morphological characters in angiosperms. Developmental Genetics and Plant Evolution, 247-266. doi:10.1201/9781420024982.ch13
Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.x
Damerval, C., Citerne, H., Conde e Silva, N., Deveaux, Y., Delannoy, E., Joets, J., … Nadot, S. (2019). Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00018
Damerval, C., Citerne, H., Le Guilloux, M., Domenichini, S., Dutheil, J., Ronse de Craene, L., & Nadot, S. (2013). Asymmetric morphogenetic cues along the transverse plane: Shift from disymmetry to zygomorphy in the flower of Fumarioideae. American Journal of Botany, 100(2), 391-402. doi:10.3732/ajb.1200376
Damerval, C., Guilloux, M. L., Jager, M., & Charon, C. (2006). Diversity and Evolution ofCYCLOIDEA-Like TCP Genes in Relation to Flower Development in Papaveraceae. Plant Physiology, 143(2), 759-772. doi:10.1104/pp.106.090324
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., … Immink, R. G. H. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant Physiology, 159(4), 1511-1523. doi:10.1104/pp.112.200303
Danisman, S., van Dijk, A. D. J., Bimbo, A., van der Wal, F., Hennig, L., de Folter, S., … Immink, R. G. H. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 64(18), 5673-5685. doi:10.1093/jxb/ert337
Doebley, J. (2004). The Genetics of Maize Evolution. Annual Review of Genetics, 38(1), 37-59. doi:10.1146/annurev.genet.38.072902.092425
Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 141(1), 333-346. doi:10.1093/genetics/141.1.333
Doebley, J., Stec, A., & Hubbard, L. (1997). The evolution of apical dominance in maize. Nature, 386(6624), 485-488. doi:10.1038/386485a0
Efroni, I., Blum, E., Goldshmidt, A., & Eshed, Y. (2008). A Protracted and Dynamic Maturation Schedule UnderliesArabidopsisLeaf Development. The Plant Cell, 20(9), 2293-2306. doi:10.1105/tpc.107.057521
Elomaa, P., Zhao, Y., & Zhang, T. (2018). Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research, 5(1). doi:10.1038/s41438-018-0056-8
Endress, P. K. (2012). The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms. The Botanical Review, 78(4), 345-397. doi:10.1007/s12229-012-9106-3
Ferrándiz, C., Liljegren, S. J., & Yanofsky, M. F. (2000). Negative Regulation of the
SHATTERPROOF
Genes by FRUITFULL During
Arabidopsis
Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436
Galego, L. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & Development, 16(7), 880-891. doi:10.1101/gad.221002
Gaudin, V., Lunness, P. A., Fobert, P. R., Towers, M., Riou-Khamlichi, C., Murray, J. A. H., … Doonan, J. H. (2000). The Expression of D-Cyclin Genes Defines Distinct Developmental Zones in Snapdragon Apical Meristems and Is Locally Regulated by the Cycloidea Gene. Plant Physiology, 122(4), 1137-1148. doi:10.1104/pp.122.4.1137
González, F., & Pabón‐Mora, N. (2015). Trickery flowers: the extraordinary chemical mimicry of
Aristolochia
to accomplish deception to its pollinators. New Phytologist, 206(1), 10-13. doi:10.1111/nph.13328
González, F., & Stevenson, D. W. (2000). Perianth development and systematics of Aristolochia. Flora, 195(4), 370-391. doi:10.1016/s0367-2530(17)30995-7
Heery, D. M., Kalkhoven, E., Hoare, S., & Parker, M. G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634), 733-736. doi:10.1038/42750
Hileman, L. C. (2014). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1648), 20130348. doi:10.1098/rstb.2013.0348
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. doi:10.1093/molbev/msx281
Horn, S., Pabón-Mora, N., Theuß, V. S., Busch, A., & Zachgo, S. (2015). Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. The Plant Journal, 81(4), 559-571. doi:10.1111/tpj.12750
Howarth, D. G., & Donoghue, M. J. (2006). Phylogenetic analysis of the «ECE» (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences, 103(24), 9101-9106. doi:10.1073/pnas.0602827103
Howarth, D. G., Martins, T., Chimney, E., & Donoghue, M. J. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany, 107(9), 1521-1532. doi:10.1093/aob/mcr049
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. doi:10.1038/nmeth.4285
Katoh, K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066. doi:10.1093/nar/gkf436
Kosugi, S., & Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal, 30(3), 337-348. doi:10.1046/j.1365-313x.2002.01294.x
Koyama, T., Furutani, M., Tasaka, M., & Ohme-Takagi, M. (2006). TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes inArabidopsis. The Plant Cell, 19(2), 473-484. doi:10.1105/tpc.106.044792
Leppik, E. E. (1972). Origin and Evolution of Bilateral Symmetry in Flowers. Evolutionary Biology, 49-85. doi:10.1007/978-1-4757-0256-9_3
Li, C., Potuschak, T., Colon-Carmona, A., Gutierrez, R. A., & Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences, 102(36), 12978-12983. doi:10.1073/pnas.0504039102
Li, M., Zhang, D., Gao, Q., Luo, Y., Zhang, H., Ma, B., … Xue, Y. (2019). Genome structure and evolution of Antirrhinum majus L. Nature Plants, 5(2), 174-183. doi:10.1038/s41477-018-0349-9
Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10(7), e1044192. doi:10.1080/15592324.2015.1044192
Li, S., Gutsche, N., & Zachgo, S. (2011). The ROXY1 C-Terminal L**LL Motif Is Essential for the Interaction with TGA Transcription Factors
. Plant Physiology, 157(4), 2056-2068. doi:10.1104/pp.111.185199
Lin, Y.-F., Chen, Y.-Y., Hsiao, Y.-Y., Shen, C.-Y., Hsu, J.-L., Yeh, C.-M., … Tsai, W.-C. (2016). Genome-wide identification and characterization ofTCPgenes involved in ovule development ofPhalaenopsis equestris. Journal of Experimental Botany, 67(17), 5051-5066. doi:10.1093/jxb/erw273
Da Luo, Carpenter, R., Copsey, L., Vincent, C., Clark, J., & Coen, E. (1999). Control of Organ Asymmetry in Flowers of Antirrhinum. Cell, 99(4), 367-376. doi:10.1016/s0092-8674(00)81523-8
Luo, D., Carpenter, R., Vincent, C., Copsey, L., & Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature, 383(6603), 794-799. doi:10.1038/383794a0
Madrigal, Y., Alzate, J. F., & Pabón-Mora, N. (2017). Evolution and Expression Patterns of TCP Genes in Asparagales. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00009
Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. doi:10.1016/j.tplants.2009.11.003
MillerMA PfeifferW SchwartzT.2010.Creating the CIPRES Science Gateway for inference of large phylogenetic trees. [WWW document] URLhttp://www.phylo.org[accessed 5 June 2020].
Mondragón-Palomino, M., & Trontin, C. (2011). High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Annals of Botany, 107(9), 1533-1544. doi:10.1093/aob/mcr059
Nath, U., Crawford, B. C. W., Carpenter, R., & Coen, E. (2003). Genetic Control of Surface Curvature. Science, 299(5611), 1404-1407. doi:10.1126/science.1079354
Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., & Hervé, C. (2007). TCP Transcription Factors Predate the Emergence of Land Plants. Journal of Molecular Evolution, 65(1), 23-33. doi:10.1007/s00239-006-0174-z
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300
Pabón-Mora, N., Suárez-Baron, H., Ambrose, B. A., & González, F. (2015). Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01095
Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958
Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A. G., … de Maagd, R. A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-157
Peréz-Mesa, P., Ortíz-Ramírez, C. I., González, F., Ferrándiz, C., & Pabón-Mora, N. (2020). Expression of gynoecium patterning transcription factors in Aristolochia fimbriata (Aristolochiaceae) and their contribution to gynostemium development. EvoDevo, 11(1). doi:10.1186/s13227-020-00149-8
Preston, J. C., & Hileman, L. C. (2012). Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo, 3(1), 6. doi:10.1186/2041-9139-3-6
Preston, J. C., Kost, M. A., & Hileman, L. C. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist, 182(3), 751-762. doi:10.1111/j.1469-8137.2009.02794.x
RambautA.2014.FigTree: tree figure drawing tool. [WWW document] URLhttp://tree.bio.ed.ac.uk/software/figtree/.
Rudall, P. J., & Bateman, R. M. (2004). Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist, 162(1), 25-44. doi:10.1111/j.1469-8137.2004.01032.x
Sargent, R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1539), 603-608. doi:10.1098/rspb.2003.2644
Suárez-Baron, H., Alzate, J. F., González, F., Ambrose, B. A., & Pabón-Mora, N. (2019). Genetic mechanisms underlying perianth epidermal elaboration of Aristolochia ringens Vahl (Aristolochiaceae). Flora, 253, 56-66. doi:10.1016/j.flora.2019.03.004
Suárez-Baron, H., Pérez-Mesa, P., Ambrose, B. A., González, F., & Pabón-Mora, N. (2016). Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes inAristolochia fimbriata(Aristolochiaceae). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328(1-2), 55-71. doi:10.1002/jez.b.22686
Viola, I. L., Uberti Manassero, N. G., Ripoll, R., & Gonzalez, D. H. (2011). The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal, 435(1), 143-155. doi:10.1042/bj20101019
Wang, J., Wang, Y., & Luo, D. (2010). LjCYC Genes Constitute Floral Dorsoventral Asymmetry in Lotus japonicus. Journal of Integrative Plant Biology, 52(11), 959-970. doi:10.1111/j.1744-7909.2010.00926.x
Yuan, Z., Gao, S., Xue, D.-W., Luo, D., Li, L.-T., Ding, S.-Y., … Zhang, D.-B. (2008). RETARDED PALEA1 Controls Palea Development and Floral Zygomorphy in Rice
. Plant Physiology, 149(1), 235-244. doi:10.1104/pp.108.128231
Zhang, W., Kramer, E. M., & Davis, C. C. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences, 107(14), 6388-6393. doi:10.1073/pnas.0910155107
Zhang, W., Steinmann, V. W., Nikolov, L., Kramer, E. M., & Davis, C. C. (2013). Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00302
[-]