- -

Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Igual García, Jorge es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2021-09-09T03:34:29Z
dc.date.available 2021-09-09T03:34:29Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171678
dc.description.abstract [EN] Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pathologies in the current society: diabetic retinopathy. The proposed method avoids the necessity of lesion segmentation or candidate map generation before the classification stage. Local binary patterns and granulometric profiles are locally computed to extract texture and morphological information from retinal images. Different combinations of this information feed classification algorithms to optimally discriminate bright and dark lesions from healthy tissues. Through several experiments, the ability of the proposed system to identify diabetic retinopathy signs is validated using different public databases with a large degree of variability and without image exclusion. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biomedical image processing es_ES
dc.subject Diabetic retinopathy es_ES
dc.subject Classification es_ES
dc.subject Granulometry-based descriptor es_ES
dc.subject LBP es_ES
dc.subject Hand-driven learning es_ES
dc.subject Exudates es_ES
dc.subject Microaneurysms es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20041005 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Colomer, A.; Igual García, J.; Naranjo Ornedo, V. (2020). Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images. Sensors. 20(4):1-20. https://doi.org/10.3390/s20041005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20041005 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32069912 es_ES
dc.identifier.pmcid PMC7071097 es_ES
dc.relation.pasarela S\402742 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references World Report on Vision. Technical Report, 2019https://www.who.int/publications-detail/world-report-on-vision es_ES
dc.description.references Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., … Klein, R. (2003). Retinopathy in Diabetes. Diabetes Care, 27(Supplement 1), S84-S87. doi:10.2337/diacare.27.2007.s84 es_ES
dc.description.references COGAN, D. G. (1961). Retinal Vascular Patterns. Archives of Ophthalmology, 66(3), 366. doi:10.1001/archopht.1961.00960010368014 es_ES
dc.description.references Wilkinson, C. ., Ferris, F. L., Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., … Verdaguer, J. T. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9), 1677-1682. doi:10.1016/s0161-6420(03)00475-5 es_ES
dc.description.references Universal Eye Health: A Global Action Plan 2014–2019. Technical Reporthttps://www.who.int/blindness/actionplan/en/ es_ES
dc.description.references Salamat, N., Missen, M. M. S., & Rashid, A. (2019). Diabetic retinopathy techniques in retinal images: A review. Artificial Intelligence in Medicine, 97, 168-188. doi:10.1016/j.artmed.2018.10.009 es_ES
dc.description.references Qureshi, I., Ma, J., & Shaheed, K. (2019). A Hybrid Proposed Fundus Image Enhancement Framework for Diabetic Retinopathy. Algorithms, 12(1), 14. doi:10.3390/a12010014 es_ES
dc.description.references Morales, S., Engan, K., Naranjo, V., & Colomer, A. (2017). Retinal Disease Screening Through Local Binary Patterns. IEEE Journal of Biomedical and Health Informatics, 21(1), 184-192. doi:10.1109/jbhi.2015.2490798 es_ES
dc.description.references Asiri, N., Hussain, M., Al Adel, F., & Alzaidi, N. (2019). Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artificial Intelligence in Medicine, 99, 101701. doi:10.1016/j.artmed.2019.07.009 es_ES
dc.description.references Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402. doi:10.1001/jama.2016.17216 es_ES
dc.description.references Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281-292. doi:10.1016/j.cmpb.2016.09.018 es_ES
dc.description.references Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abramoff, M., Mendonca, A. M., & Campilho, A. (2018). End-to-End Adversarial Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 37(3), 781-791. doi:10.1109/tmi.2017.2759102 es_ES
dc.description.references De la Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465-476. doi:10.1016/j.neucom.2018.07.102 es_ES
dc.description.references Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434 es_ES
dc.description.references Walter, T., Klein, J., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 21(10), 1236-1243. doi:10.1109/tmi.2002.806290 es_ES
dc.description.references Welfer, D., Scharcanski, J., & Marinho, D. R. (2010). A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Computerized Medical Imaging and Graphics, 34(3), 228-235. doi:10.1016/j.compmedimag.2009.10.001 es_ES
dc.description.references Mookiah, M. R. K., Acharya, U. R., Martis, R. J., Chua, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowledge-Based Systems, 39, 9-22. doi:10.1016/j.knosys.2012.09.008 es_ES
dc.description.references Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., Laÿ, B., Danno, R., … Erginay, A. (2014). Exudate detection in color retinal images for mass screening of diabetic retinopathy. Medical Image Analysis, 18(7), 1026-1043. doi:10.1016/j.media.2014.05.004 es_ES
dc.description.references Sopharak, A., Uyyanonvara, B., Barman, S., & Williamson, T. H. (2008). Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Computerized Medical Imaging and Graphics, 32(8), 720-727. doi:10.1016/j.compmedimag.2008.08.009 es_ES
dc.description.references Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., & Chaum, E. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16(1), 216-226. doi:10.1016/j.media.2011.07.004 es_ES
dc.description.references Amel, F., Mohammed, M., & Abdelhafid, B. (2012). Improvement of the Hard Exudates Detection Method Used For Computer- Aided Diagnosis of Diabetic Retinopathy. International Journal of Image, Graphics and Signal Processing, 4(4), 19-27. doi:10.5815/ijigsp.2012.04.03 es_ES
dc.description.references Usman Akram, M., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161-171. doi:10.1016/j.compbiomed.2013.11.014 es_ES
dc.description.references Akram, M. U., Tariq, A., Khan, S. A., & Javed, M. Y. (2014). Automated detection of exudates and macula for grading of diabetic macular edema. Computer Methods and Programs in Biomedicine, 114(2), 141-152. doi:10.1016/j.cmpb.2014.01.010 es_ES
dc.description.references Quellec, G., Lamard, M., Abràmoff, M. D., Decencière, E., Lay, B., Erginay, A., … Cazuguel, G. (2012). A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis, 16(6), 1228-1240. doi:10.1016/j.media.2012.06.003 es_ES
dc.description.references Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.-C., Meyer, F., … Chabouis, A. (2013). TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM, 34(2), 196-203. doi:10.1016/j.irbm.2013.01.010 es_ES
dc.description.references Abràmoff, M. D., Folk, J. C., Han, D. P., Walker, J. D., Williams, D. F., Russell, S. R., … Niemeijer, M. (2013). Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy. JAMA Ophthalmology, 131(3), 351. doi:10.1001/jamaophthalmol.2013.1743 es_ES
dc.description.references Almotiri, J., Elleithy, K., & Elleithy, A. (2018). Retinal Vessels Segmentation Techniques and Algorithms: A Survey. Applied Sciences, 8(2), 155. doi:10.3390/app8020155 es_ES
dc.description.references Thakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162-189. doi:10.1016/j.bspc.2018.01.014 es_ES
dc.description.references Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. Proceedings of the 27th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’00. doi:10.1145/344779.344972 es_ES
dc.description.references Qureshi, M. A., Deriche, M., Beghdadi, A., & Amin, A. (2017). A critical survey of state-of-the-art image inpainting quality assessment metrics. Journal of Visual Communication and Image Representation, 49, 177-191. doi:10.1016/j.jvcir.2017.09.006 es_ES
dc.description.references Colomer, A., Naranjo, V., Engan, K., & Skretting, K. (2017). Assessment of sparse-based inpainting for retinal vessel removal. Signal Processing: Image Communication, 59, 73-82. doi:10.1016/j.image.2017.03.018 es_ES
dc.description.references Morales, S., Naranjo, V., Angulo, J., & Alcaniz, M. (2013). Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology. IEEE Transactions on Medical Imaging, 32(4), 786-796. doi:10.1109/tmi.2013.2238244 es_ES
dc.description.references Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51-59. doi:10.1016/0031-3203(95)00067-4 es_ES
dc.description.references Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971-987. doi:10.1109/tpami.2002.1017623 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES
dc.description.references Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199 es_ES
dc.description.references Tapia, S. L., Molina, R., & de la Blanca, N. P. (2016). Detection and localization of objects in Passive Millimeter Wave Images. 2016 24th European Signal Processing Conference (EUSIPCO). doi:10.1109/eusipco.2016.7760619 es_ES
dc.description.references Jin Huang, & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299-310. doi:10.1109/tkde.2005.50 es_ES
dc.description.references Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A Survey on Graphical Methods for Classification Predictive Performance Evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601-1618. doi:10.1109/tkde.2011.59 es_ES
dc.description.references Mandrekar, J. N. (2010). Receiver Operating Characteristic Curve in Diagnostic Test Assessment. Journal of Thoracic Oncology, 5(9), 1315-1316. doi:10.1097/jto.0b013e3181ec173d es_ES
dc.description.references Rocha, A., Carvalho, T., Jelinek, H. F., Goldenstein, S., & Wainer, J. (2012). Points of Interest and Visual Dictionaries for Automatic Retinal Lesion Detection. IEEE Transactions on Biomedical Engineering, 59(8), 2244-2253. doi:10.1109/tbme.2012.2201717 es_ES
dc.description.references Júnior, S. B., & Welfer, D. (2013). Automatic Detection of Microaneurysms and Hemorrhages in Color Eye Fundus Images. International Journal of Computer Science and Information Technology, 5(5), 21-37. doi:10.5121/ijcsit.2013.5502 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem