Mostrar el registro sencillo del ítem
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Igual García, Jorge | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2021-09-09T03:34:29Z | |
dc.date.available | 2021-09-09T03:34:29Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171678 | |
dc.description.abstract | [EN] Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pathologies in the current society: diabetic retinopathy. The proposed method avoids the necessity of lesion segmentation or candidate map generation before the classification stage. Local binary patterns and granulometric profiles are locally computed to extract texture and morphological information from retinal images. Different combinations of this information feed classification algorithms to optimally discriminate bright and dark lesions from healthy tissues. Through several experiments, the ability of the proposed system to identify diabetic retinopathy signs is validated using different public databases with a large degree of variability and without image exclusion. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Biomedical image processing | es_ES |
dc.subject | Diabetic retinopathy | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Granulometry-based descriptor | es_ES |
dc.subject | LBP | es_ES |
dc.subject | Hand-driven learning | es_ES |
dc.subject | Exudates | es_ES |
dc.subject | Microaneurysms | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s20041005 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Colomer, A.; Igual García, J.; Naranjo Ornedo, V. (2020). Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images. Sensors. 20(4):1-20. https://doi.org/10.3390/s20041005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s20041005 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 32069912 | es_ES |
dc.identifier.pmcid | PMC7071097 | es_ES |
dc.relation.pasarela | S\402742 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | World Report on Vision. Technical Report, 2019https://www.who.int/publications-detail/world-report-on-vision | es_ES |
dc.description.references | Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., … Klein, R. (2003). Retinopathy in Diabetes. Diabetes Care, 27(Supplement 1), S84-S87. doi:10.2337/diacare.27.2007.s84 | es_ES |
dc.description.references | COGAN, D. G. (1961). Retinal Vascular Patterns. Archives of Ophthalmology, 66(3), 366. doi:10.1001/archopht.1961.00960010368014 | es_ES |
dc.description.references | Wilkinson, C. ., Ferris, F. L., Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., … Verdaguer, J. T. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9), 1677-1682. doi:10.1016/s0161-6420(03)00475-5 | es_ES |
dc.description.references | Universal Eye Health: A Global Action Plan 2014–2019. Technical Reporthttps://www.who.int/blindness/actionplan/en/ | es_ES |
dc.description.references | Salamat, N., Missen, M. M. S., & Rashid, A. (2019). Diabetic retinopathy techniques in retinal images: A review. Artificial Intelligence in Medicine, 97, 168-188. doi:10.1016/j.artmed.2018.10.009 | es_ES |
dc.description.references | Qureshi, I., Ma, J., & Shaheed, K. (2019). A Hybrid Proposed Fundus Image Enhancement Framework for Diabetic Retinopathy. Algorithms, 12(1), 14. doi:10.3390/a12010014 | es_ES |
dc.description.references | Morales, S., Engan, K., Naranjo, V., & Colomer, A. (2017). Retinal Disease Screening Through Local Binary Patterns. IEEE Journal of Biomedical and Health Informatics, 21(1), 184-192. doi:10.1109/jbhi.2015.2490798 | es_ES |
dc.description.references | Asiri, N., Hussain, M., Al Adel, F., & Alzaidi, N. (2019). Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artificial Intelligence in Medicine, 99, 101701. doi:10.1016/j.artmed.2019.07.009 | es_ES |
dc.description.references | Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402. doi:10.1001/jama.2016.17216 | es_ES |
dc.description.references | Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281-292. doi:10.1016/j.cmpb.2016.09.018 | es_ES |
dc.description.references | Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abramoff, M., Mendonca, A. M., & Campilho, A. (2018). End-to-End Adversarial Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 37(3), 781-791. doi:10.1109/tmi.2017.2759102 | es_ES |
dc.description.references | De la Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465-476. doi:10.1016/j.neucom.2018.07.102 | es_ES |
dc.description.references | Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434 | es_ES |
dc.description.references | Walter, T., Klein, J., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 21(10), 1236-1243. doi:10.1109/tmi.2002.806290 | es_ES |
dc.description.references | Welfer, D., Scharcanski, J., & Marinho, D. R. (2010). A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Computerized Medical Imaging and Graphics, 34(3), 228-235. doi:10.1016/j.compmedimag.2009.10.001 | es_ES |
dc.description.references | Mookiah, M. R. K., Acharya, U. R., Martis, R. J., Chua, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowledge-Based Systems, 39, 9-22. doi:10.1016/j.knosys.2012.09.008 | es_ES |
dc.description.references | Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., Laÿ, B., Danno, R., … Erginay, A. (2014). Exudate detection in color retinal images for mass screening of diabetic retinopathy. Medical Image Analysis, 18(7), 1026-1043. doi:10.1016/j.media.2014.05.004 | es_ES |
dc.description.references | Sopharak, A., Uyyanonvara, B., Barman, S., & Williamson, T. H. (2008). Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Computerized Medical Imaging and Graphics, 32(8), 720-727. doi:10.1016/j.compmedimag.2008.08.009 | es_ES |
dc.description.references | Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., & Chaum, E. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16(1), 216-226. doi:10.1016/j.media.2011.07.004 | es_ES |
dc.description.references | Amel, F., Mohammed, M., & Abdelhafid, B. (2012). Improvement of the Hard Exudates Detection Method Used For Computer- Aided Diagnosis of Diabetic Retinopathy. International Journal of Image, Graphics and Signal Processing, 4(4), 19-27. doi:10.5815/ijigsp.2012.04.03 | es_ES |
dc.description.references | Usman Akram, M., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161-171. doi:10.1016/j.compbiomed.2013.11.014 | es_ES |
dc.description.references | Akram, M. U., Tariq, A., Khan, S. A., & Javed, M. Y. (2014). Automated detection of exudates and macula for grading of diabetic macular edema. Computer Methods and Programs in Biomedicine, 114(2), 141-152. doi:10.1016/j.cmpb.2014.01.010 | es_ES |
dc.description.references | Quellec, G., Lamard, M., Abràmoff, M. D., Decencière, E., Lay, B., Erginay, A., … Cazuguel, G. (2012). A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis, 16(6), 1228-1240. doi:10.1016/j.media.2012.06.003 | es_ES |
dc.description.references | Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.-C., Meyer, F., … Chabouis, A. (2013). TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM, 34(2), 196-203. doi:10.1016/j.irbm.2013.01.010 | es_ES |
dc.description.references | Abràmoff, M. D., Folk, J. C., Han, D. P., Walker, J. D., Williams, D. F., Russell, S. R., … Niemeijer, M. (2013). Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy. JAMA Ophthalmology, 131(3), 351. doi:10.1001/jamaophthalmol.2013.1743 | es_ES |
dc.description.references | Almotiri, J., Elleithy, K., & Elleithy, A. (2018). Retinal Vessels Segmentation Techniques and Algorithms: A Survey. Applied Sciences, 8(2), 155. doi:10.3390/app8020155 | es_ES |
dc.description.references | Thakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162-189. doi:10.1016/j.bspc.2018.01.014 | es_ES |
dc.description.references | Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. Proceedings of the 27th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’00. doi:10.1145/344779.344972 | es_ES |
dc.description.references | Qureshi, M. A., Deriche, M., Beghdadi, A., & Amin, A. (2017). A critical survey of state-of-the-art image inpainting quality assessment metrics. Journal of Visual Communication and Image Representation, 49, 177-191. doi:10.1016/j.jvcir.2017.09.006 | es_ES |
dc.description.references | Colomer, A., Naranjo, V., Engan, K., & Skretting, K. (2017). Assessment of sparse-based inpainting for retinal vessel removal. Signal Processing: Image Communication, 59, 73-82. doi:10.1016/j.image.2017.03.018 | es_ES |
dc.description.references | Morales, S., Naranjo, V., Angulo, J., & Alcaniz, M. (2013). Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology. IEEE Transactions on Medical Imaging, 32(4), 786-796. doi:10.1109/tmi.2013.2238244 | es_ES |
dc.description.references | Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51-59. doi:10.1016/0031-3203(95)00067-4 | es_ES |
dc.description.references | Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971-987. doi:10.1109/tpami.2002.1017623 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199 | es_ES |
dc.description.references | Tapia, S. L., Molina, R., & de la Blanca, N. P. (2016). Detection and localization of objects in Passive Millimeter Wave Images. 2016 24th European Signal Processing Conference (EUSIPCO). doi:10.1109/eusipco.2016.7760619 | es_ES |
dc.description.references | Jin Huang, & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299-310. doi:10.1109/tkde.2005.50 | es_ES |
dc.description.references | Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A Survey on Graphical Methods for Classification Predictive Performance Evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601-1618. doi:10.1109/tkde.2011.59 | es_ES |
dc.description.references | Mandrekar, J. N. (2010). Receiver Operating Characteristic Curve in Diagnostic Test Assessment. Journal of Thoracic Oncology, 5(9), 1315-1316. doi:10.1097/jto.0b013e3181ec173d | es_ES |
dc.description.references | Rocha, A., Carvalho, T., Jelinek, H. F., Goldenstein, S., & Wainer, J. (2012). Points of Interest and Visual Dictionaries for Automatic Retinal Lesion Detection. IEEE Transactions on Biomedical Engineering, 59(8), 2244-2253. doi:10.1109/tbme.2012.2201717 | es_ES |
dc.description.references | Júnior, S. B., & Welfer, D. (2013). Automatic Detection of Microaneurysms and Hemorrhages in Color Eye Fundus Images. International Journal of Computer Science and Information Technology, 5(5), 21-37. doi:10.5121/ijcsit.2013.5502 | es_ES |