World Report on Vision. Technical Report, 2019https://www.who.int/publications-detail/world-report-on-vision
Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., … Klein, R. (2003). Retinopathy in Diabetes. Diabetes Care, 27(Supplement 1), S84-S87. doi:10.2337/diacare.27.2007.s84
COGAN, D. G. (1961). Retinal Vascular Patterns. Archives of Ophthalmology, 66(3), 366. doi:10.1001/archopht.1961.00960010368014
[+]
World Report on Vision. Technical Report, 2019https://www.who.int/publications-detail/world-report-on-vision
Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., … Klein, R. (2003). Retinopathy in Diabetes. Diabetes Care, 27(Supplement 1), S84-S87. doi:10.2337/diacare.27.2007.s84
COGAN, D. G. (1961). Retinal Vascular Patterns. Archives of Ophthalmology, 66(3), 366. doi:10.1001/archopht.1961.00960010368014
Wilkinson, C. ., Ferris, F. L., Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., … Verdaguer, J. T. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9), 1677-1682. doi:10.1016/s0161-6420(03)00475-5
Universal Eye Health: A Global Action Plan 2014–2019. Technical Reporthttps://www.who.int/blindness/actionplan/en/
Salamat, N., Missen, M. M. S., & Rashid, A. (2019). Diabetic retinopathy techniques in retinal images: A review. Artificial Intelligence in Medicine, 97, 168-188. doi:10.1016/j.artmed.2018.10.009
Qureshi, I., Ma, J., & Shaheed, K. (2019). A Hybrid Proposed Fundus Image Enhancement Framework for Diabetic Retinopathy. Algorithms, 12(1), 14. doi:10.3390/a12010014
Morales, S., Engan, K., Naranjo, V., & Colomer, A. (2017). Retinal Disease Screening Through Local Binary Patterns. IEEE Journal of Biomedical and Health Informatics, 21(1), 184-192. doi:10.1109/jbhi.2015.2490798
Asiri, N., Hussain, M., Al Adel, F., & Alzaidi, N. (2019). Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artificial Intelligence in Medicine, 99, 101701. doi:10.1016/j.artmed.2019.07.009
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402. doi:10.1001/jama.2016.17216
Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281-292. doi:10.1016/j.cmpb.2016.09.018
Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abramoff, M., Mendonca, A. M., & Campilho, A. (2018). End-to-End Adversarial Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 37(3), 781-791. doi:10.1109/tmi.2017.2759102
De la Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465-476. doi:10.1016/j.neucom.2018.07.102
Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434
Walter, T., Klein, J., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 21(10), 1236-1243. doi:10.1109/tmi.2002.806290
Welfer, D., Scharcanski, J., & Marinho, D. R. (2010). A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Computerized Medical Imaging and Graphics, 34(3), 228-235. doi:10.1016/j.compmedimag.2009.10.001
Mookiah, M. R. K., Acharya, U. R., Martis, R. J., Chua, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowledge-Based Systems, 39, 9-22. doi:10.1016/j.knosys.2012.09.008
Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., Laÿ, B., Danno, R., … Erginay, A. (2014). Exudate detection in color retinal images for mass screening of diabetic retinopathy. Medical Image Analysis, 18(7), 1026-1043. doi:10.1016/j.media.2014.05.004
Sopharak, A., Uyyanonvara, B., Barman, S., & Williamson, T. H. (2008). Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Computerized Medical Imaging and Graphics, 32(8), 720-727. doi:10.1016/j.compmedimag.2008.08.009
Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., & Chaum, E. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16(1), 216-226. doi:10.1016/j.media.2011.07.004
Amel, F., Mohammed, M., & Abdelhafid, B. (2012). Improvement of the Hard Exudates Detection Method Used For Computer- Aided Diagnosis of Diabetic Retinopathy. International Journal of Image, Graphics and Signal Processing, 4(4), 19-27. doi:10.5815/ijigsp.2012.04.03
Usman Akram, M., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161-171. doi:10.1016/j.compbiomed.2013.11.014
Akram, M. U., Tariq, A., Khan, S. A., & Javed, M. Y. (2014). Automated detection of exudates and macula for grading of diabetic macular edema. Computer Methods and Programs in Biomedicine, 114(2), 141-152. doi:10.1016/j.cmpb.2014.01.010
Quellec, G., Lamard, M., Abràmoff, M. D., Decencière, E., Lay, B., Erginay, A., … Cazuguel, G. (2012). A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis, 16(6), 1228-1240. doi:10.1016/j.media.2012.06.003
Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.-C., Meyer, F., … Chabouis, A. (2013). TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM, 34(2), 196-203. doi:10.1016/j.irbm.2013.01.010
Abràmoff, M. D., Folk, J. C., Han, D. P., Walker, J. D., Williams, D. F., Russell, S. R., … Niemeijer, M. (2013). Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy. JAMA Ophthalmology, 131(3), 351. doi:10.1001/jamaophthalmol.2013.1743
Almotiri, J., Elleithy, K., & Elleithy, A. (2018). Retinal Vessels Segmentation Techniques and Algorithms: A Survey. Applied Sciences, 8(2), 155. doi:10.3390/app8020155
Thakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162-189. doi:10.1016/j.bspc.2018.01.014
Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. Proceedings of the 27th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’00. doi:10.1145/344779.344972
Qureshi, M. A., Deriche, M., Beghdadi, A., & Amin, A. (2017). A critical survey of state-of-the-art image inpainting quality assessment metrics. Journal of Visual Communication and Image Representation, 49, 177-191. doi:10.1016/j.jvcir.2017.09.006
Colomer, A., Naranjo, V., Engan, K., & Skretting, K. (2017). Assessment of sparse-based inpainting for retinal vessel removal. Signal Processing: Image Communication, 59, 73-82. doi:10.1016/j.image.2017.03.018
Morales, S., Naranjo, V., Angulo, J., & Alcaniz, M. (2013). Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology. IEEE Transactions on Medical Imaging, 32(4), 786-796. doi:10.1109/tmi.2013.2238244
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51-59. doi:10.1016/0031-3203(95)00067-4
Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971-987. doi:10.1109/tpami.2002.1017623
Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199
Tapia, S. L., Molina, R., & de la Blanca, N. P. (2016). Detection and localization of objects in Passive Millimeter Wave Images. 2016 24th European Signal Processing Conference (EUSIPCO). doi:10.1109/eusipco.2016.7760619
Jin Huang, & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299-310. doi:10.1109/tkde.2005.50
Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A Survey on Graphical Methods for Classification Predictive Performance Evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601-1618. doi:10.1109/tkde.2011.59
Mandrekar, J. N. (2010). Receiver Operating Characteristic Curve in Diagnostic Test Assessment. Journal of Thoracic Oncology, 5(9), 1315-1316. doi:10.1097/jto.0b013e3181ec173d
Rocha, A., Carvalho, T., Jelinek, H. F., Goldenstein, S., & Wainer, J. (2012). Points of Interest and Visual Dictionaries for Automatic Retinal Lesion Detection. IEEE Transactions on Biomedical Engineering, 59(8), 2244-2253. doi:10.1109/tbme.2012.2201717
Júnior, S. B., & Welfer, D. (2013). Automatic Detection of Microaneurysms and Hemorrhages in Color Eye Fundus Images. International Journal of Computer Science and Information Technology, 5(5), 21-37. doi:10.5121/ijcsit.2013.5502
[-]