- -

Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications

Mostrar el registro completo del ítem

Torres, E.; Domínguez-Candela, I.; Castelló-Palacios, S.; Vallés Lluch, A.; Fombuena, V. (2020). Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications. Polymers. 12(8):1-13. https://doi.org/10.3390/polym12081703

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171682

Ficheros en el ítem

Metadatos del ítem

Título: Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications
Autor: Torres, Elena Domínguez-Candela, Iván Castelló-Palacios, Sergio Vallés Lluch, Ana Fombuena, Vicent
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic ...[+]
Palabras clave: Biomedical polymers , Hydroxyapatite , Halloysite , Mechanical properties
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12081703
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12081703
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-19/
Agradecimientos:
Dominguez-Candela thanks the Universitat Politècnica de València for the financial support through an FPI-UPV grant (PAID-01-19)
Tipo: Artículo

References

Noyama, Y., Miura, T., Ishimoto, T., Itaya, T., Niinomi, M., & Nakano, T. (2012). Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant. MATERIALS TRANSACTIONS, 53(3), 565-570. doi:10.2320/matertrans.m2011358

Temple, J. P., Hutton, D. L., Hung, B. P., Huri, P. Y., Cook, C. A., Kondragunta, R., … Grayson, W. L. (2014). Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.35107

Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0 [+]
Noyama, Y., Miura, T., Ishimoto, T., Itaya, T., Niinomi, M., & Nakano, T. (2012). Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant. MATERIALS TRANSACTIONS, 53(3), 565-570. doi:10.2320/matertrans.m2011358

Temple, J. P., Hutton, D. L., Hung, B. P., Huri, P. Y., Cook, C. A., Kondragunta, R., … Grayson, W. L. (2014). Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.35107

Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0

Li, X., Cui, R., Sun, L., Aifantis, K. E., Fan, Y., Feng, Q., … Watari, F. (2014). 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science, 2014, 1-13. doi:10.1155/2014/829145

Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2016). Recent advances in aliphatic polyesters for drug delivery applications. WIREs Nanomedicine and Nanobiotechnology, 9(4). doi:10.1002/wnan.1446

Venkatesan, J., & Kim, S.-K. (2014). Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. Journal of Biomedical Nanotechnology, 10(10), 3124-3140. doi:10.1166/jbn.2014.1893

Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. doi:10.1016/j.biomaterials.2005.04.036

Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039

Lowry, K. J., Hamson, K. R., Bear, L., Peng, Y. B., Calaluce, R., Evans, M. L., … Allen, W. C. (1997). Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research, 36(4), 536-541. doi:10.1002/(sici)1097-4636(19970915)36:4<536::aid-jbm12>3.0.co;2-8

Corden, T. J., Jones, I. A., Rudd, C. D., Christian, P., Downes, S., & McDougall, K. E. (2000). Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomaterials, 21(7), 713-724. doi:10.1016/s0142-9612(99)00236-7

Onal, L., Cozien-Cazuc, S., Jones, I. A., & Rudd, C. D. (2007). Water absorption properties of phosphate glass fiber-reinforced poly-ε-caprolactone composites for craniofacial bone repair. Journal of Applied Polymer Science, 107(6), 3750-3755. doi:10.1002/app.27518

Ahmed, I., Parsons, A. J., Palmer, G., Knowles, J. C., Walker, G. S., & Rudd, C. D. (2008). Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomaterialia, 4(5), 1307-1314. doi:10.1016/j.actbio.2008.03.018

Gough, J. E., Christian, P., Scotchford, C. A., Rudd, C. D., & Jones, I. A. (2001). Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Journal of Biomedical Materials Research, 59(3), 481-489. doi:10.1002/jbm.10020

Gough, J. E., Christian, P., Unsworth, J., Evans, M. P., Scotchford, C. A., & Jones, I. A. (2004). Controlled degradation and macrophage responses of a fluoride-treated polycaprolactone. Journal of Biomedical Materials Research, 69A(1), 17-25. doi:10.1002/jbm.a.20072

Choi, W.-Y., Kim, H.-E., & Koh, Y.-H. (2012). Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. Journal of Porous Materials, 20(4), 701-708. doi:10.1007/s10934-012-9644-4

Yeo, M. G., & Kim, G. H. (2011). Preparation and Characterization of 3D Composite Scaffolds Based on Rapid-Prototyped PCL/β-TCP Struts and Electrospun PCL Coated with Collagen and HA for Bone Regeneration. Chemistry of Materials, 24(5), 903-913. doi:10.1021/cm201119q

Salerno, A., Zeppetelli, S., Di Maio, E., Iannace, S., & Netti, P. A. (2011). Design of Bimodal PCL and PCL-HA Nanocomposite Scaffolds by Two Step Depressurization During Solid-state Supercritical CO2 Foaming. Macromolecular Rapid Communications, 32(15), 1150-1156. doi:10.1002/marc.201100119

Jackson, I. T., & Yavuzer, R. (2000). Hydroxyapatite cement: an alternative for craniofacial skeletal contour refinements. British Journal of Plastic Surgery, 53(1), 24-29. doi:10.1054/bjps.1999.3236

Miller, L., Guerra, A. B., Bidros, R. S., Trahan, C., Baratta, R., & Metzinger, S. E. (2005). A Comparison of Resistance to Fracture Among Four Commercially Available Forms of Hydroxyapatite Cement. Annals of Plastic Surgery, 55(1), 87-92. doi:10.1097/01.sap.0000162510.05196.c6

Lawson, E. E., Barry, B. W., Williams, A. C., & Edwards, H. G. M. (1997). Biomedical Applications of Raman Spectroscopy. Journal of Raman Spectroscopy, 28(2-3), 111-117. doi:10.1002/(sici)1097-4555(199702)28:2/3<111::aid-jrs87>3.0.co;2-z

Loty, C., Sautier, J.-M., Boulekbache, H., Kokubo, T., Kim, H.-M., & Forest, N. (2000). In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 49(4), 423-434. doi:10.1002/(sici)1097-4636(20000315)49:4<423::aid-jbm1>3.0.co;2-7

Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3

Torres, E., Vallés-Lluch, A., Fombuena, V., Napiwocki, B., & Lih-Sheng, T. (2017). Influence of the Hydrophobic-Hydrophilic Nature of Biomedical Polymers and Nanocomposites on In Vitro Biological Development. Macromolecular Materials and Engineering, 302(12), 1700259. doi:10.1002/mame.201700259

Chen, B., & Sun, K. (2005). Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(ε-caprolactone). Polymer Testing, 24(8), 978-982. doi:10.1016/j.polymertesting.2005.07.013

Heo, S.-J., Kim, S.-E., Wei, J., Hyun, Y.-T., Yun, H.-S., Kim, D.-H., … Shin, J.-W. (2008). Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.31726

Lee, K.-S., & Chang, Y.-W. (2012). Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 128(5), 2807-2816. doi:10.1002/app.38457

Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4

Zhou, W. Y., Guo, B., Liu, M., Liao, R., Rabie, A. B. M., & Jia, D. (2009). Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.32656

Xue, W., Bandyopadhyay, A., & Bose, S. (2009). Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 5(5), 1686-1696. doi:10.1016/j.actbio.2009.01.012

Torres, E., Fombuena, V., Vallés-Lluch, A., & Ellingham, T. (2017). Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. Materials Science and Engineering: C, 75, 418-424. doi:10.1016/j.msec.2017.02.087

Abe, Y., Kokubo, T., & Yamamuro, T. (1990). Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of Materials Science: Materials in Medicine, 1(4), 233-238. doi:10.1007/bf00701082

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017

Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472-480. doi:10.1067/mva.2003.88

Kim, H.-M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., … Nakamura, T. (1999). Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. Journal of Biomedical Materials Research, 46(2), 228-235. doi:10.1002/(sici)1097-4636(199908)46:2<228::aid-jbm12>3.0.co;2-j

TAKADAMA, H., KIM, H.-M., MIYAJI, F., KOKUBO, T., & NAKAMURA, T. (2000). Mechanism of Apatite Formation Induced by Silanol Groups. TEM observation. Journal of the Ceramic Society of Japan, 108(1254), 118-121. doi:10.2109/jcersj.108.1254_118

Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022

HUTCHENS, S., BENSON, R., EVANS, B., ONEILL, H., & RAWN, C. (2006). Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials, 27(26), 4661-4670. doi:10.1016/j.biomaterials.2006.04.032

Kim, H.-M., Himeno, T., Kawashita, M., Kokubo, T., & Nakamura, T. (2004). The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of The Royal Society Interface, 1(1), 17-22. doi:10.1098/rsif.2004.0003

Azzopardi, P. V., O’Young, J., Lajoie, G., Karttunen, M., Goldberg, H. A., & Hunter, G. K. (2010). Roles of Electrostatics and Conformation in Protein-Crystal Interactions. PLoS ONE, 5(2), e9330. doi:10.1371/journal.pone.0009330

Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 69(1), 11-25. doi:10.1016/0092-8674(92)90115-s

Wassell, D. T. H., Hall, R. C., & Embery, G. (1995). Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials, 16(9), 697-702. doi:10.1016/0142-9612(95)99697-k

Zhou, H., Wu, T., Dong, X., Wang, Q., & Shen, J. (2007). Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochemical and Biophysical Research Communications, 361(1), 91-96. doi:10.1016/j.bbrc.2007.06.169

Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. doi:10.1016/s0142-9612(00)00101-0

Li, H., Chen, Y., & Xie, Y. (2003). Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Materials Letters, 57(19), 2848-2854. doi:10.1016/s0167-577x(02)01386-1

Albertsson, A.-C., & Varma, I. K. (2002). Aliphatic Polyesters: Synthesis, Properties and Applications. Degradable Aliphatic Polyesters, 1-40. doi:10.1007/3-540-45734-8_1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem