- -

Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications

Show simple item record

Files in this item

dc.contributor.author Torres, Elena es_ES
dc.contributor.author Domínguez-Candela, Iván es_ES
dc.contributor.author Castelló-Palacios, Sergio es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Fombuena, Vicent es_ES
dc.date.accessioned 2021-09-09T03:35:10Z
dc.date.available 2021-09-09T03:35:10Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171682
dc.description.abstract [EN] We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (¿-caprolactone) (PCL) was blended with its more hydrophilic counterpart poly (lactic acid) (PLA) and the hydrophilic acrylate poly (2-hydroxyethyl methacrylate) (PHEMA) was analogously compared to poly (ethyl methacrylate) (PEMA) and its copolymer. The addition of HA and HNTs clearly improve surface wettability in neat samples (PCL and PHEMA), but not that of the corresponding binary blends. Energy-dispersive X-ray spectroscopy mapping analyses show a homogenous distribution of HA with appropriate Ca/P ratios between 1.3 and 2, even on samples that were incubated for seven days in simulated body fluid, with the exception of PHEMA, which is excessively hydrophilic to promote the deposition of salts on its surface. HNTs promote large aggregates on more hydrophilic polymers. The degradation process of the biodegradable polyester PCL blended with PLA, and the addition of HA and HNTs, provide hydrophilic units and decrease the overall crystallinity of PCL. Consequently, after 12 weeks of incubation in phosphate buffered saline the mass loss increases up to 48% and mechanical properties decrease above 60% compared with the PCL/PLA blend. es_ES
dc.description.sponsorship Dominguez-Candela thanks the Universitat Politècnica de València for the financial support through an FPI-UPV grant (PAID-01-19) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biomedical polymers es_ES
dc.subject Hydroxyapatite es_ES
dc.subject Halloysite es_ES
dc.subject Mechanical properties es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12081703 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-19/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Torres, E.; Domínguez-Candela, I.; Castelló-Palacios, S.; Vallés Lluch, A.; Fombuena, V. (2020). Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications. Polymers. 12(8):1-13. https://doi.org/10.3390/polym12081703 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12081703 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32751376 es_ES
dc.identifier.pmcid PMC7465803 es_ES
dc.relation.pasarela S\416489 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Noyama, Y., Miura, T., Ishimoto, T., Itaya, T., Niinomi, M., & Nakano, T. (2012). Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant. MATERIALS TRANSACTIONS, 53(3), 565-570. doi:10.2320/matertrans.m2011358 es_ES
dc.description.references Temple, J. P., Hutton, D. L., Hung, B. P., Huri, P. Y., Cook, C. A., Kondragunta, R., … Grayson, W. L. (2014). Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.35107 es_ES
dc.description.references Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0 es_ES
dc.description.references Li, X., Cui, R., Sun, L., Aifantis, K. E., Fan, Y., Feng, Q., … Watari, F. (2014). 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science, 2014, 1-13. doi:10.1155/2014/829145 es_ES
dc.description.references Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2016). Recent advances in aliphatic polyesters for drug delivery applications. WIREs Nanomedicine and Nanobiotechnology, 9(4). doi:10.1002/wnan.1446 es_ES
dc.description.references Venkatesan, J., & Kim, S.-K. (2014). Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. Journal of Biomedical Nanotechnology, 10(10), 3124-3140. doi:10.1166/jbn.2014.1893 es_ES
dc.description.references Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. doi:10.1016/j.biomaterials.2005.04.036 es_ES
dc.description.references Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039 es_ES
dc.description.references Lowry, K. J., Hamson, K. R., Bear, L., Peng, Y. B., Calaluce, R., Evans, M. L., … Allen, W. C. (1997). Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research, 36(4), 536-541. doi:10.1002/(sici)1097-4636(19970915)36:4<536::aid-jbm12>3.0.co;2-8 es_ES
dc.description.references Corden, T. J., Jones, I. A., Rudd, C. D., Christian, P., Downes, S., & McDougall, K. E. (2000). Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomaterials, 21(7), 713-724. doi:10.1016/s0142-9612(99)00236-7 es_ES
dc.description.references Onal, L., Cozien-Cazuc, S., Jones, I. A., & Rudd, C. D. (2007). Water absorption properties of phosphate glass fiber-reinforced poly-ε-caprolactone composites for craniofacial bone repair. Journal of Applied Polymer Science, 107(6), 3750-3755. doi:10.1002/app.27518 es_ES
dc.description.references Ahmed, I., Parsons, A. J., Palmer, G., Knowles, J. C., Walker, G. S., & Rudd, C. D. (2008). Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomaterialia, 4(5), 1307-1314. doi:10.1016/j.actbio.2008.03.018 es_ES
dc.description.references Gough, J. E., Christian, P., Scotchford, C. A., Rudd, C. D., & Jones, I. A. (2001). Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Journal of Biomedical Materials Research, 59(3), 481-489. doi:10.1002/jbm.10020 es_ES
dc.description.references Gough, J. E., Christian, P., Unsworth, J., Evans, M. P., Scotchford, C. A., & Jones, I. A. (2004). Controlled degradation and macrophage responses of a fluoride-treated polycaprolactone. Journal of Biomedical Materials Research, 69A(1), 17-25. doi:10.1002/jbm.a.20072 es_ES
dc.description.references Choi, W.-Y., Kim, H.-E., & Koh, Y.-H. (2012). Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. Journal of Porous Materials, 20(4), 701-708. doi:10.1007/s10934-012-9644-4 es_ES
dc.description.references Yeo, M. G., & Kim, G. H. (2011). Preparation and Characterization of 3D Composite Scaffolds Based on Rapid-Prototyped PCL/β-TCP Struts and Electrospun PCL Coated with Collagen and HA for Bone Regeneration. Chemistry of Materials, 24(5), 903-913. doi:10.1021/cm201119q es_ES
dc.description.references Salerno, A., Zeppetelli, S., Di Maio, E., Iannace, S., & Netti, P. A. (2011). Design of Bimodal PCL and PCL-HA Nanocomposite Scaffolds by Two Step Depressurization During Solid-state Supercritical CO2 Foaming. Macromolecular Rapid Communications, 32(15), 1150-1156. doi:10.1002/marc.201100119 es_ES
dc.description.references Jackson, I. T., & Yavuzer, R. (2000). Hydroxyapatite cement: an alternative for craniofacial skeletal contour refinements. British Journal of Plastic Surgery, 53(1), 24-29. doi:10.1054/bjps.1999.3236 es_ES
dc.description.references Miller, L., Guerra, A. B., Bidros, R. S., Trahan, C., Baratta, R., & Metzinger, S. E. (2005). A Comparison of Resistance to Fracture Among Four Commercially Available Forms of Hydroxyapatite Cement. Annals of Plastic Surgery, 55(1), 87-92. doi:10.1097/01.sap.0000162510.05196.c6 es_ES
dc.description.references Lawson, E. E., Barry, B. W., Williams, A. C., & Edwards, H. G. M. (1997). Biomedical Applications of Raman Spectroscopy. Journal of Raman Spectroscopy, 28(2-3), 111-117. doi:10.1002/(sici)1097-4555(199702)28:2/3<111::aid-jrs87>3.0.co;2-z es_ES
dc.description.references Loty, C., Sautier, J.-M., Boulekbache, H., Kokubo, T., Kim, H.-M., & Forest, N. (2000). In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. Journal of Biomedical Materials Research, 49(4), 423-434. doi:10.1002/(sici)1097-4636(20000315)49:4<423::aid-jbm1>3.0.co;2-7 es_ES
dc.description.references Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3 es_ES
dc.description.references Torres, E., Vallés-Lluch, A., Fombuena, V., Napiwocki, B., & Lih-Sheng, T. (2017). Influence of the Hydrophobic-Hydrophilic Nature of Biomedical Polymers and Nanocomposites on In Vitro Biological Development. Macromolecular Materials and Engineering, 302(12), 1700259. doi:10.1002/mame.201700259 es_ES
dc.description.references Chen, B., & Sun, K. (2005). Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(ε-caprolactone). Polymer Testing, 24(8), 978-982. doi:10.1016/j.polymertesting.2005.07.013 es_ES
dc.description.references Heo, S.-J., Kim, S.-E., Wei, J., Hyun, Y.-T., Yun, H.-S., Kim, D.-H., … Shin, J.-W. (2008). Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.31726 es_ES
dc.description.references Lee, K.-S., & Chang, Y.-W. (2012). Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 128(5), 2807-2816. doi:10.1002/app.38457 es_ES
dc.description.references Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4 es_ES
dc.description.references Zhou, W. Y., Guo, B., Liu, M., Liao, R., Rabie, A. B. M., & Jia, D. (2009). Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, n/a-n/a. doi:10.1002/jbm.a.32656 es_ES
dc.description.references Xue, W., Bandyopadhyay, A., & Bose, S. (2009). Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 5(5), 1686-1696. doi:10.1016/j.actbio.2009.01.012 es_ES
dc.description.references Torres, E., Fombuena, V., Vallés-Lluch, A., & Ellingham, T. (2017). Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. Materials Science and Engineering: C, 75, 418-424. doi:10.1016/j.msec.2017.02.087 es_ES
dc.description.references Abe, Y., Kokubo, T., & Yamamuro, T. (1990). Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of Materials Science: Materials in Medicine, 1(4), 233-238. doi:10.1007/bf00701082 es_ES
dc.description.references Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017 es_ES
dc.description.references Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472-480. doi:10.1067/mva.2003.88 es_ES
dc.description.references Kim, H.-M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., … Nakamura, T. (1999). Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. Journal of Biomedical Materials Research, 46(2), 228-235. doi:10.1002/(sici)1097-4636(199908)46:2<228::aid-jbm12>3.0.co;2-j es_ES
dc.description.references TAKADAMA, H., KIM, H.-M., MIYAJI, F., KOKUBO, T., & NAKAMURA, T. (2000). Mechanism of Apatite Formation Induced by Silanol Groups. TEM observation. Journal of the Ceramic Society of Japan, 108(1254), 118-121. doi:10.2109/jcersj.108.1254_118 es_ES
dc.description.references Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022 es_ES
dc.description.references HUTCHENS, S., BENSON, R., EVANS, B., ONEILL, H., & RAWN, C. (2006). Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials, 27(26), 4661-4670. doi:10.1016/j.biomaterials.2006.04.032 es_ES
dc.description.references Kim, H.-M., Himeno, T., Kawashita, M., Kokubo, T., & Nakamura, T. (2004). The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of The Royal Society Interface, 1(1), 17-22. doi:10.1098/rsif.2004.0003 es_ES
dc.description.references Azzopardi, P. V., O’Young, J., Lajoie, G., Karttunen, M., Goldberg, H. A., & Hunter, G. K. (2010). Roles of Electrostatics and Conformation in Protein-Crystal Interactions. PLoS ONE, 5(2), e9330. doi:10.1371/journal.pone.0009330 es_ES
dc.description.references Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 69(1), 11-25. doi:10.1016/0092-8674(92)90115-s es_ES
dc.description.references Wassell, D. T. H., Hall, R. C., & Embery, G. (1995). Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials, 16(9), 697-702. doi:10.1016/0142-9612(95)99697-k es_ES
dc.description.references Zhou, H., Wu, T., Dong, X., Wang, Q., & Shen, J. (2007). Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochemical and Biophysical Research Communications, 361(1), 91-96. doi:10.1016/j.bbrc.2007.06.169 es_ES
dc.description.references Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. doi:10.1016/s0142-9612(00)00101-0 es_ES
dc.description.references Li, H., Chen, Y., & Xie, Y. (2003). Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Materials Letters, 57(19), 2848-2854. doi:10.1016/s0167-577x(02)01386-1 es_ES
dc.description.references Albertsson, A.-C., & Varma, I. K. (2002). Aliphatic Polyesters: Synthesis, Properties and Applications. Degradable Aliphatic Polyesters, 1-40. doi:10.1007/3-540-45734-8_1 es_ES


This item appears in the following Collection(s)

Show simple item record