- -

A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium

Show full item record

Cerqueira, A.; Romero-Gavilán, F.; Araujo-Gomes, N.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.; Azkargorta, M.... (2020). A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium. Materials Science and Engineering C: Materials for Biological Applications (Online). 116:1-10. https://doi.org/10.1016/j.msec.2020.111262

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171683

Files in this item

Item Metadata

Title: A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium
Author: Cerqueira, Andreia Romero-Gavilán, Francisco Araujo-Gomes, Nuno García-Arnáez, Iñaki Martínez-Ramos, Cristina Ozturan, Seda Azkargorta, Mikel Elortza, Félix Gurruchaga, Mariló Suay, Julio Goñi, Isabel
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Melatonin (MLT) is widely known for regulating the circadian cycles and has been studied for its role in bone regeneration and inflammation. Its application as a coating for dental implants can condition the local ...[+]
Subjects: Osseointegration , Hybrid sol-gel , Inflammation , Proteomics , Coating , N-acetyl-5-metoxy-tryptamine
Copyrigths: Reserva de todos los derechos
Source:
Materials Science and Engineering C: Materials for Biological Applications (Online). (eissn: 1873-0191 )
DOI: 10.1016/j.msec.2020.111262
Publisher:
Elsevier BV
Publisher version: https://doi.org/10.1016/j.msec.2020.111262
Project ID:
info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/
...[+]
info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/
info:eu-repo/grantAgreement/AEI//RTC-2017-6147-1/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/
info:eu-repo/grantAgreement/UJI//UJI-B2017-37/
info:eu-repo/grantAgreement/UPV%2FEHU//UFI11%2F56/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0644/
info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/
[-]
Thanks:
This work was supported by MINECO [MAT MAT2017-86043-R; RTC-2017-6147-1], Universitat Jaume I under [UJI-B2017-37; POSDOC/2019/28], Generalitat Valenciana [GRISOLIAP/2018/091], University of the Basque Country under ...[+]
Type: Artículo

References

Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., … Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International, 2016, 1-16. doi:10.1155/2016/6285620

Oshiro Junior, J., Paiva Abuçafy, M., Berbel Manaia, E., Lallo da Silva, B., Chiari-Andréo, B., & Aparecida Chiavacci, L. (2016). Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers, 8(4), 91. doi:10.3390/polym8040091

Martínez-Ibáñez, M., Juan-Díaz, M. J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., … Goñi, I. (2016). Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 27(4). doi:10.1007/s10856-016-5690-9 [+]
Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., … Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International, 2016, 1-16. doi:10.1155/2016/6285620

Oshiro Junior, J., Paiva Abuçafy, M., Berbel Manaia, E., Lallo da Silva, B., Chiari-Andréo, B., & Aparecida Chiavacci, L. (2016). Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers, 8(4), 91. doi:10.3390/polym8040091

Martínez-Ibáñez, M., Juan-Díaz, M. J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., … Goñi, I. (2016). Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 27(4). doi:10.1007/s10856-016-5690-9

Maria, S., & Witt-Enderby, P. A. (2014). Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. Journal of Pineal Research, 56(2), 115-125. doi:10.1111/jpi.12116

Roth, J. A., Kim, B.-G., Lin, W.-L., & Cho, M.-I. (1999). Melatonin Promotes Osteoblast Differentiation and Bone Formation. Journal of Biological Chemistry, 274(31), 22041-22047. doi:10.1074/jbc.274.31.22041

Sethi, S., Radio, N. M., Kotlarczyk, M. P., Chen, C.-T., Wei, Y.-H., Jockers, R., & Witt-Enderby, P. A. (2010). Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. Journal of Pineal Research, 49(3), 222-238. doi:10.1111/j.1600-079x.2010.00784.x

Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., … Huang, D. (2010). Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. Journal of Pineal Research, 49(4), 364-372. doi:10.1111/j.1600-079x.2010.00803.x

Park, K.-H., Kang, J. W., Lee, E.-M., Kim, J. S., Rhee, Y. H., Kim, M., … Hoon Kim, S. (2011). Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. Journal of Pineal Research, 51(2), 187-194. doi:10.1111/j.1600-079x.2011.00875.x

Ping, Z., Wang, Z., Shi, J., Wang, L., Guo, X., Zhou, W., … Geng, D. (2017). Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomaterialia, 62, 362-371. doi:10.1016/j.actbio.2017.08.046

Kadena, M., Kumagai, Y., Vandenbon, A., Matsushima, H., Fukamachi, H., Maruta, N., … Kuwata, H. (2017). Microarray and gene co-expression analysis reveals that melatonin attenuates immune responses and modulates actin rearrangement in macrophages. Biochemical and Biophysical Research Communications, 485(2), 414-420. doi:10.1016/j.bbrc.2017.02.063

Xia, Y., Chen, S., Zeng, S., Zhao, Y., Zhu, C., Deng, B., … Ren, W. (2019). Melatonin in macrophage biology: Current understanding and future perspectives. Journal of Pineal Research, 66(2), e12547. doi:10.1111/jpi.12547

Hardeland, R. (2018). Melatonin and inflammation-Story of a double-edged blade. Journal of Pineal Research, 65(4), e12525. doi:10.1111/jpi.12525

Ma, Q., Reiter, R. J., & Chen, Y. (2019). Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 23(2), 91-104. doi:10.1007/s10456-019-09689-7

Ramírez-Fernández, M. P., Calvo-Guirado, J. L., de-Val, J. E.-M. S., Delgado-Ruiz, R. A., Negri, B., Pardo-Zamora, G., … Alcaraz-Baños, M. (2012). Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clinical Oral Investigations, 17(1), 147-158. doi:10.1007/s00784-012-0684-6

Reiter, R. J., Mayo, J. C., Tan, D.-X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 61(3), 253-278. doi:10.1111/jpi.12360

Araújo-Gomes, N., Romero-Gavilán, F., García-Arnáez, I., Martínez-Ramos, C., Sánchez-Pérez, A. M., Azkargorta, M., … Suay, J. (2018). Osseointegration mechanisms: a proteomic approach. JBIC Journal of Biological Inorganic Chemistry, 23(3), 459-470. doi:10.1007/s00775-018-1553-9

Sheikh, Z., Brooks, P., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials, 8(9), 5671-5701. doi:10.3390/ma8095269

Romero-Gavilán, F., Araújo-Gomes, N., Cerqueira, A., García-Arnáez, I., Martínez-Ramos, C., Azkargorta, M., … Goñi, I. (2019). Proteomic analysis of calcium-enriched sol–gel biomaterials. JBIC Journal of Biological Inorganic Chemistry, 24(4), 563-574. doi:10.1007/s00775-019-01662-5

Romero-Gavilan, F., Sánchez-Pérez, A. M., Araújo-Gomes, N., Azkargorta, M., Iloro, I., Elortza, F., … Suay, J. (2017). Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling, 33(8), 676-689. doi:10.1080/08927014.2017.1356289

Zhang, L., Zhang, J., Ling, Y., Chen, C., Liang, A., Peng, Y., … Huang, D. (2012). Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. Journal of Pineal Research, 54(1), 24-32. doi:10.1111/j.1600-079x.2012.01016.x

Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359-362. doi:10.1038/nmeth.1322

Romero-Gavilán, F., Barros-Silva, S., García-Cañadas, J., Palla, B., Izquierdo, R., Gurruchaga, M., … Suay, J. (2016). Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. Journal of Non-Crystalline Solids, 453, 66-73. doi:10.1016/j.jnoncrysol.2016.09.026

Li, Y., Zhao, X., Zu, Y., Wang, L., Wu, W., Deng, Y., … Liu, Y. (2017). Melatonin-loaded silica coated with hydroxypropyl methylcellulose phthalate for enhanced oral bioavailability: Preparation, and in vitro-in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 112, 58-66. doi:10.1016/j.ejpb.2016.11.003

Juan-Díaz, M. J., Martínez-Ibáñez, M., Hernández-Escolano, M., Cabedo, L., Izquierdo, R., Suay, J., … Goñi, I. (2014). Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 77(11), 1799-1806. doi:10.1016/j.porgcoat.2014.06.004

Vishnevskiy, A. S., Seregin, D. S., Vorotilov, K. A., Sigov, A. S., Mogilnikov, K. P., & Baklanov, M. R. (2019). Effect of water content on the structural properties of porous methyl-modified silicate films. Journal of Sol-Gel Science and Technology, 92(2), 273-281. doi:10.1007/s10971-019-05028-w

Sabzichi, M., Samadi, N., Mohammadian, J., Hamishehkar, H., Akbarzadeh, M., & Molavi, O. (2016). Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids and Surfaces B: Biointerfaces, 145, 64-71. doi:10.1016/j.colsurfb.2016.04.042

Son, J.-H., Cho, Y.-C., Sung, I.-Y., Kim, I.-R., Park, B.-S., & Kim, Y.-D. (2014). Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. Journal of Pineal Research, 57(4), 385-392. doi:10.1111/jpi.12177

Ping, Z., Hu, X., Wang, L., Shi, J., Tao, Y., Wu, X., … Geng, D. (2017). Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomaterialia, 51, 513-525. doi:10.1016/j.actbio.2017.01.034

Cho, N.-H., & Seong, S.-Y. (2009). Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology, 128(1pt2), e479-e486. doi:10.1111/j.1365-2567.2008.03002.x

Berbee, J. F. P., Havekes, L. M., & Rensen, P. C. N. (2005). Apolipoproteins modulate the inflammatory response to lipopolysaccharide. Journal of Endotoxin Research, 11(2), 97-103. doi:10.1177/09680519050110020501

Nesargikar, P., Spiller, B., & Chavez, R. (2012). The complement system: History, pathways, cascade and inhibitors. European Journal of Microbiology and Immunology, 2(2), 103-111. doi:10.1556/eujmi.2.2012.2.2

Carroll, M. C. (2004). The complement system in regulation of adaptive immunity. Nature Immunology, 5(10), 981-986. doi:10.1038/ni1113

CARROLL, M. (2004). The complement system in B cell regulation. Molecular Immunology, 41(2-3), 141-146. doi:10.1016/j.molimm.2004.03.017

Mollnes, T. E., & Kirschfink, M. (2006). Strategies of therapeutic complement inhibition. Molecular Immunology, 43(1-2), 107-121. doi:10.1016/j.molimm.2005.06.014

Mauriz, J. L., Collado, P. S., Veneroso, C., Reiter, R. J., & González-Gallego, J. (2012). A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. Journal of Pineal Research, 54(1), 1-14. doi:10.1111/j.1600-079x.2012.01014.x

Calvo, J. R., González-Yanes, C., & Maldonado, M. D. (2013). The role of melatonin in the cells of the innate immunity: a review. Journal of Pineal Research, 55(2), 103-120. doi:10.1111/jpi.12075

Druhan, L. J., Lance, A., Li, S., Price, A. E., Emerson, J. T., Baxter, S. A., … Avalos, B. R. (2017). Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLOS ONE, 12(1), e0170261. doi:10.1371/journal.pone.0170261

Park, S.-Y., Jang, W.-J., Yi, E.-Y., Jang, J.-Y., Jung, Y., Jeong, J.-W., & Kim, Y.-J. (2010). Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. Journal of Pineal Research, 48(2), 178-184. doi:10.1111/j.1600-079x.2009.00742.x

Kim, K.-J., Choi, J.-S., Kang, I., Kim, K.-W., Jeong, C.-H., & Jeong, J.-W. (2012). Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. Journal of Pineal Research, 54(3), 264-270. doi:10.1111/j.1600-079x.2012.01030.x

Wu, Y. (2015). Contact pathway of coagulation and inflammation. Thrombosis Journal, 13(1). doi:10.1186/s12959-015-0048-y

Sakharov, D. V., Nagelkerke, J. F., & Rijken, D. C. (1996). Rearrangements of the Fibrin Network and Spatial Distribution of Fibrinolytic Components during Plasma Clot Lysis. Journal of Biological Chemistry, 271(4), 2133-2138. doi:10.1074/jbc.271.4.2133

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record