Mostrar el registro sencillo del ítem
dc.contributor.author | Cerqueira, Andreia | es_ES |
dc.contributor.author | Romero-Gavilán, Francisco | es_ES |
dc.contributor.author | Araujo-Gomes, Nuno | es_ES |
dc.contributor.author | García-Arnáez, Iñaki | es_ES |
dc.contributor.author | Martínez-Ramos, Cristina | es_ES |
dc.contributor.author | Ozturan, Seda | es_ES |
dc.contributor.author | Azkargorta, Mikel | es_ES |
dc.contributor.author | Elortza, Félix | es_ES |
dc.contributor.author | Gurruchaga, Mariló | es_ES |
dc.contributor.author | Suay, Julio | es_ES |
dc.contributor.author | Goñi, Isabel | es_ES |
dc.date.accessioned | 2021-09-09T03:35:12Z | |
dc.date.available | 2021-09-09T03:35:12Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171683 | |
dc.description.abstract | [EN] Melatonin (MLT) is widely known for regulating the circadian cycles and has been studied for its role in bone regeneration and inflammation. Its application as a coating for dental implants can condition the local micro environment, affecting protein deposition on its surface and the cellular and tissue response. Using sol-gel coatings as a release vehicle for MLT, the aim of this work was to assess the potential of this molecule in improving the osseointegration and inflammatory responses of a titanium substrate. The materials obtained were physicochemically characterized (scanning electron microscopy, contact angle, roughness, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, Si release, MLT liberation, and degradation) and studied in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophage cells. Although MLT application led to an increased gene expression of RUNX2 and BMP2 in 10MTL, it did not improve ALP activity. On the other hand, MLT-enriched sol-gel materials presented potential effects in the adsorption of proteins related to inflammation, coagulation and angiogenesis pathways depending on the dosage used. Using LC-MS/MS, protein adsorption patterns were studied after incubation with human serum. Proteins related to the complement systems (CO7, IC1, CO5, CO8A, and CO9) were less adsorbed in materials with MLT; on the other hand, proteins with functions in the coagulation and angiogenesis pathways, such as A2GL and PLMN, showed a significant adsorption pattern. | es_ES |
dc.description.sponsorship | This work was supported by MINECO [MAT MAT2017-86043-R; RTC-2017-6147-1], Universitat Jaume I under [UJI-B2017-37; POSDOC/2019/28], Generalitat Valenciana [GRISOLIAP/2018/091], University of the Basque Country under [UFI11/56] and Basque Government under [PRE_2017_2_0044]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); CIBERehd Network and Severo Ochoa Grant (SEV-2016-0644). Authors would like to thank Antonio Coso (GMI-Ilerimplant) for their inestimable contribution to this study, and Raquel Oliver, Jose Ortega (UJI) and Iraide Escobes (CIC bioGUNE) for their valuable technical assistance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier BV | es_ES |
dc.relation.ispartof | Materials Science and Engineering C: Materials for Biological Applications (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Osseointegration | es_ES |
dc.subject | Hybrid sol-gel | es_ES |
dc.subject | Inflammation | es_ES |
dc.subject | Proteomics | es_ES |
dc.subject | Coating | es_ES |
dc.subject | N-acetyl-5-metoxy-tryptamine | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.msec.2020.111262 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC-2017-6147-1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2017-37/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV%2FEHU//UFI11%2F56/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0644/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Cerqueira, A.; Romero-Gavilán, F.; Araujo-Gomes, N.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.; Azkargorta, M.... (2020). A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium. Materials Science and Engineering C: Materials for Biological Applications (Online). 116:1-10. https://doi.org/10.1016/j.msec.2020.111262 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.msec.2020.111262 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.identifier.eissn | 1873-0191 | es_ES |
dc.identifier.pmid | 32806297 | es_ES |
dc.relation.pasarela | S\433170 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universidad del País Vasco/Euskal Herriko Unibertsitatea | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas | es_ES |
dc.description.references | Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., … Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International, 2016, 1-16. doi:10.1155/2016/6285620 | es_ES |
dc.description.references | Oshiro Junior, J., Paiva Abuçafy, M., Berbel Manaia, E., Lallo da Silva, B., Chiari-Andréo, B., & Aparecida Chiavacci, L. (2016). Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers, 8(4), 91. doi:10.3390/polym8040091 | es_ES |
dc.description.references | Martínez-Ibáñez, M., Juan-Díaz, M. J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., … Goñi, I. (2016). Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 27(4). doi:10.1007/s10856-016-5690-9 | es_ES |
dc.description.references | Maria, S., & Witt-Enderby, P. A. (2014). Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. Journal of Pineal Research, 56(2), 115-125. doi:10.1111/jpi.12116 | es_ES |
dc.description.references | Roth, J. A., Kim, B.-G., Lin, W.-L., & Cho, M.-I. (1999). Melatonin Promotes Osteoblast Differentiation and Bone Formation. Journal of Biological Chemistry, 274(31), 22041-22047. doi:10.1074/jbc.274.31.22041 | es_ES |
dc.description.references | Sethi, S., Radio, N. M., Kotlarczyk, M. P., Chen, C.-T., Wei, Y.-H., Jockers, R., & Witt-Enderby, P. A. (2010). Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. Journal of Pineal Research, 49(3), 222-238. doi:10.1111/j.1600-079x.2010.00784.x | es_ES |
dc.description.references | Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., … Huang, D. (2010). Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. Journal of Pineal Research, 49(4), 364-372. doi:10.1111/j.1600-079x.2010.00803.x | es_ES |
dc.description.references | Park, K.-H., Kang, J. W., Lee, E.-M., Kim, J. S., Rhee, Y. H., Kim, M., … Hoon Kim, S. (2011). Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. Journal of Pineal Research, 51(2), 187-194. doi:10.1111/j.1600-079x.2011.00875.x | es_ES |
dc.description.references | Ping, Z., Wang, Z., Shi, J., Wang, L., Guo, X., Zhou, W., … Geng, D. (2017). Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomaterialia, 62, 362-371. doi:10.1016/j.actbio.2017.08.046 | es_ES |
dc.description.references | Kadena, M., Kumagai, Y., Vandenbon, A., Matsushima, H., Fukamachi, H., Maruta, N., … Kuwata, H. (2017). Microarray and gene co-expression analysis reveals that melatonin attenuates immune responses and modulates actin rearrangement in macrophages. Biochemical and Biophysical Research Communications, 485(2), 414-420. doi:10.1016/j.bbrc.2017.02.063 | es_ES |
dc.description.references | Xia, Y., Chen, S., Zeng, S., Zhao, Y., Zhu, C., Deng, B., … Ren, W. (2019). Melatonin in macrophage biology: Current understanding and future perspectives. Journal of Pineal Research, 66(2), e12547. doi:10.1111/jpi.12547 | es_ES |
dc.description.references | Hardeland, R. (2018). Melatonin and inflammation-Story of a double-edged blade. Journal of Pineal Research, 65(4), e12525. doi:10.1111/jpi.12525 | es_ES |
dc.description.references | Ma, Q., Reiter, R. J., & Chen, Y. (2019). Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 23(2), 91-104. doi:10.1007/s10456-019-09689-7 | es_ES |
dc.description.references | Ramírez-Fernández, M. P., Calvo-Guirado, J. L., de-Val, J. E.-M. S., Delgado-Ruiz, R. A., Negri, B., Pardo-Zamora, G., … Alcaraz-Baños, M. (2012). Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clinical Oral Investigations, 17(1), 147-158. doi:10.1007/s00784-012-0684-6 | es_ES |
dc.description.references | Reiter, R. J., Mayo, J. C., Tan, D.-X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 61(3), 253-278. doi:10.1111/jpi.12360 | es_ES |
dc.description.references | Araújo-Gomes, N., Romero-Gavilán, F., García-Arnáez, I., Martínez-Ramos, C., Sánchez-Pérez, A. M., Azkargorta, M., … Suay, J. (2018). Osseointegration mechanisms: a proteomic approach. JBIC Journal of Biological Inorganic Chemistry, 23(3), 459-470. doi:10.1007/s00775-018-1553-9 | es_ES |
dc.description.references | Sheikh, Z., Brooks, P., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials, 8(9), 5671-5701. doi:10.3390/ma8095269 | es_ES |
dc.description.references | Romero-Gavilán, F., Araújo-Gomes, N., Cerqueira, A., García-Arnáez, I., Martínez-Ramos, C., Azkargorta, M., … Goñi, I. (2019). Proteomic analysis of calcium-enriched sol–gel biomaterials. JBIC Journal of Biological Inorganic Chemistry, 24(4), 563-574. doi:10.1007/s00775-019-01662-5 | es_ES |
dc.description.references | Romero-Gavilan, F., Sánchez-Pérez, A. M., Araújo-Gomes, N., Azkargorta, M., Iloro, I., Elortza, F., … Suay, J. (2017). Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling, 33(8), 676-689. doi:10.1080/08927014.2017.1356289 | es_ES |
dc.description.references | Zhang, L., Zhang, J., Ling, Y., Chen, C., Liang, A., Peng, Y., … Huang, D. (2012). Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. Journal of Pineal Research, 54(1), 24-32. doi:10.1111/j.1600-079x.2012.01016.x | es_ES |
dc.description.references | Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359-362. doi:10.1038/nmeth.1322 | es_ES |
dc.description.references | Romero-Gavilán, F., Barros-Silva, S., García-Cañadas, J., Palla, B., Izquierdo, R., Gurruchaga, M., … Suay, J. (2016). Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. Journal of Non-Crystalline Solids, 453, 66-73. doi:10.1016/j.jnoncrysol.2016.09.026 | es_ES |
dc.description.references | Li, Y., Zhao, X., Zu, Y., Wang, L., Wu, W., Deng, Y., … Liu, Y. (2017). Melatonin-loaded silica coated with hydroxypropyl methylcellulose phthalate for enhanced oral bioavailability: Preparation, and in vitro-in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 112, 58-66. doi:10.1016/j.ejpb.2016.11.003 | es_ES |
dc.description.references | Juan-Díaz, M. J., Martínez-Ibáñez, M., Hernández-Escolano, M., Cabedo, L., Izquierdo, R., Suay, J., … Goñi, I. (2014). Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 77(11), 1799-1806. doi:10.1016/j.porgcoat.2014.06.004 | es_ES |
dc.description.references | Vishnevskiy, A. S., Seregin, D. S., Vorotilov, K. A., Sigov, A. S., Mogilnikov, K. P., & Baklanov, M. R. (2019). Effect of water content on the structural properties of porous methyl-modified silicate films. Journal of Sol-Gel Science and Technology, 92(2), 273-281. doi:10.1007/s10971-019-05028-w | es_ES |
dc.description.references | Sabzichi, M., Samadi, N., Mohammadian, J., Hamishehkar, H., Akbarzadeh, M., & Molavi, O. (2016). Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids and Surfaces B: Biointerfaces, 145, 64-71. doi:10.1016/j.colsurfb.2016.04.042 | es_ES |
dc.description.references | Son, J.-H., Cho, Y.-C., Sung, I.-Y., Kim, I.-R., Park, B.-S., & Kim, Y.-D. (2014). Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. Journal of Pineal Research, 57(4), 385-392. doi:10.1111/jpi.12177 | es_ES |
dc.description.references | Ping, Z., Hu, X., Wang, L., Shi, J., Tao, Y., Wu, X., … Geng, D. (2017). Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomaterialia, 51, 513-525. doi:10.1016/j.actbio.2017.01.034 | es_ES |
dc.description.references | Cho, N.-H., & Seong, S.-Y. (2009). Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology, 128(1pt2), e479-e486. doi:10.1111/j.1365-2567.2008.03002.x | es_ES |
dc.description.references | Berbee, J. F. P., Havekes, L. M., & Rensen, P. C. N. (2005). Apolipoproteins modulate the inflammatory response to lipopolysaccharide. Journal of Endotoxin Research, 11(2), 97-103. doi:10.1177/09680519050110020501 | es_ES |
dc.description.references | Nesargikar, P., Spiller, B., & Chavez, R. (2012). The complement system: History, pathways, cascade and inhibitors. European Journal of Microbiology and Immunology, 2(2), 103-111. doi:10.1556/eujmi.2.2012.2.2 | es_ES |
dc.description.references | Carroll, M. C. (2004). The complement system in regulation of adaptive immunity. Nature Immunology, 5(10), 981-986. doi:10.1038/ni1113 | es_ES |
dc.description.references | CARROLL, M. (2004). The complement system in B cell regulation. Molecular Immunology, 41(2-3), 141-146. doi:10.1016/j.molimm.2004.03.017 | es_ES |
dc.description.references | Mollnes, T. E., & Kirschfink, M. (2006). Strategies of therapeutic complement inhibition. Molecular Immunology, 43(1-2), 107-121. doi:10.1016/j.molimm.2005.06.014 | es_ES |
dc.description.references | Mauriz, J. L., Collado, P. S., Veneroso, C., Reiter, R. J., & González-Gallego, J. (2012). A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. Journal of Pineal Research, 54(1), 1-14. doi:10.1111/j.1600-079x.2012.01014.x | es_ES |
dc.description.references | Calvo, J. R., González-Yanes, C., & Maldonado, M. D. (2013). The role of melatonin in the cells of the innate immunity: a review. Journal of Pineal Research, 55(2), 103-120. doi:10.1111/jpi.12075 | es_ES |
dc.description.references | Druhan, L. J., Lance, A., Li, S., Price, A. E., Emerson, J. T., Baxter, S. A., … Avalos, B. R. (2017). Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLOS ONE, 12(1), e0170261. doi:10.1371/journal.pone.0170261 | es_ES |
dc.description.references | Park, S.-Y., Jang, W.-J., Yi, E.-Y., Jang, J.-Y., Jung, Y., Jeong, J.-W., & Kim, Y.-J. (2010). Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. Journal of Pineal Research, 48(2), 178-184. doi:10.1111/j.1600-079x.2009.00742.x | es_ES |
dc.description.references | Kim, K.-J., Choi, J.-S., Kang, I., Kim, K.-W., Jeong, C.-H., & Jeong, J.-W. (2012). Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. Journal of Pineal Research, 54(3), 264-270. doi:10.1111/j.1600-079x.2012.01030.x | es_ES |
dc.description.references | Wu, Y. (2015). Contact pathway of coagulation and inflammation. Thrombosis Journal, 13(1). doi:10.1186/s12959-015-0048-y | es_ES |
dc.description.references | Sakharov, D. V., Nagelkerke, J. F., & Rijken, D. C. (1996). Rearrangements of the Fibrin Network and Spatial Distribution of Fibrinolytic Components during Plasma Clot Lysis. Journal of Biological Chemistry, 271(4), 2133-2138. doi:10.1074/jbc.271.4.2133 | es_ES |