- -

A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerqueira, Andreia es_ES
dc.contributor.author Romero-Gavilán, Francisco es_ES
dc.contributor.author Araujo-Gomes, Nuno es_ES
dc.contributor.author García-Arnáez, Iñaki es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Ozturan, Seda es_ES
dc.contributor.author Azkargorta, Mikel es_ES
dc.contributor.author Elortza, Félix es_ES
dc.contributor.author Gurruchaga, Mariló es_ES
dc.contributor.author Suay, Julio es_ES
dc.contributor.author Goñi, Isabel es_ES
dc.date.accessioned 2021-09-09T03:35:12Z
dc.date.available 2021-09-09T03:35:12Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171683
dc.description.abstract [EN] Melatonin (MLT) is widely known for regulating the circadian cycles and has been studied for its role in bone regeneration and inflammation. Its application as a coating for dental implants can condition the local micro environment, affecting protein deposition on its surface and the cellular and tissue response. Using sol-gel coatings as a release vehicle for MLT, the aim of this work was to assess the potential of this molecule in improving the osseointegration and inflammatory responses of a titanium substrate. The materials obtained were physicochemically characterized (scanning electron microscopy, contact angle, roughness, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, Si release, MLT liberation, and degradation) and studied in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophage cells. Although MLT application led to an increased gene expression of RUNX2 and BMP2 in 10MTL, it did not improve ALP activity. On the other hand, MLT-enriched sol-gel materials presented potential effects in the adsorption of proteins related to inflammation, coagulation and angiogenesis pathways depending on the dosage used. Using LC-MS/MS, protein adsorption patterns were studied after incubation with human serum. Proteins related to the complement systems (CO7, IC1, CO5, CO8A, and CO9) were less adsorbed in materials with MLT; on the other hand, proteins with functions in the coagulation and angiogenesis pathways, such as A2GL and PLMN, showed a significant adsorption pattern. es_ES
dc.description.sponsorship This work was supported by MINECO [MAT MAT2017-86043-R; RTC-2017-6147-1], Universitat Jaume I under [UJI-B2017-37; POSDOC/2019/28], Generalitat Valenciana [GRISOLIAP/2018/091], University of the Basque Country under [UFI11/56] and Basque Government under [PRE_2017_2_0044]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); CIBERehd Network and Severo Ochoa Grant (SEV-2016-0644). Authors would like to thank Antonio Coso (GMI-Ilerimplant) for their inestimable contribution to this study, and Raquel Oliver, Jose Ortega (UJI) and Iraide Escobes (CIC bioGUNE) for their valuable technical assistance. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier BV es_ES
dc.relation.ispartof Materials Science and Engineering C: Materials for Biological Applications (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Osseointegration es_ES
dc.subject Hybrid sol-gel es_ES
dc.subject Inflammation es_ES
dc.subject Proteomics es_ES
dc.subject Coating es_ES
dc.subject N-acetyl-5-metoxy-tryptamine es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.msec.2020.111262 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6147-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2017-37/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV%2FEHU//UFI11%2F56/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0644/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Cerqueira, A.; Romero-Gavilán, F.; Araujo-Gomes, N.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.; Azkargorta, M.... (2020). A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium. Materials Science and Engineering C: Materials for Biological Applications (Online). 116:1-10. https://doi.org/10.1016/j.msec.2020.111262 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.msec.2020.111262 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.identifier.eissn 1873-0191 es_ES
dc.identifier.pmid 32806297 es_ES
dc.relation.pasarela S\433170 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidad del País Vasco/Euskal Herriko Unibertsitatea es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas es_ES
dc.description.references Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., … Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International, 2016, 1-16. doi:10.1155/2016/6285620 es_ES
dc.description.references Oshiro Junior, J., Paiva Abuçafy, M., Berbel Manaia, E., Lallo da Silva, B., Chiari-Andréo, B., & Aparecida Chiavacci, L. (2016). Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers, 8(4), 91. doi:10.3390/polym8040091 es_ES
dc.description.references Martínez-Ibáñez, M., Juan-Díaz, M. J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., … Goñi, I. (2016). Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 27(4). doi:10.1007/s10856-016-5690-9 es_ES
dc.description.references Maria, S., & Witt-Enderby, P. A. (2014). Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. Journal of Pineal Research, 56(2), 115-125. doi:10.1111/jpi.12116 es_ES
dc.description.references Roth, J. A., Kim, B.-G., Lin, W.-L., & Cho, M.-I. (1999). Melatonin Promotes Osteoblast Differentiation and Bone Formation. Journal of Biological Chemistry, 274(31), 22041-22047. doi:10.1074/jbc.274.31.22041 es_ES
dc.description.references Sethi, S., Radio, N. M., Kotlarczyk, M. P., Chen, C.-T., Wei, Y.-H., Jockers, R., & Witt-Enderby, P. A. (2010). Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. Journal of Pineal Research, 49(3), 222-238. doi:10.1111/j.1600-079x.2010.00784.x es_ES
dc.description.references Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., … Huang, D. (2010). Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. Journal of Pineal Research, 49(4), 364-372. doi:10.1111/j.1600-079x.2010.00803.x es_ES
dc.description.references Park, K.-H., Kang, J. W., Lee, E.-M., Kim, J. S., Rhee, Y. H., Kim, M., … Hoon Kim, S. (2011). Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. Journal of Pineal Research, 51(2), 187-194. doi:10.1111/j.1600-079x.2011.00875.x es_ES
dc.description.references Ping, Z., Wang, Z., Shi, J., Wang, L., Guo, X., Zhou, W., … Geng, D. (2017). Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomaterialia, 62, 362-371. doi:10.1016/j.actbio.2017.08.046 es_ES
dc.description.references Kadena, M., Kumagai, Y., Vandenbon, A., Matsushima, H., Fukamachi, H., Maruta, N., … Kuwata, H. (2017). Microarray and gene co-expression analysis reveals that melatonin attenuates immune responses and modulates actin rearrangement in macrophages. Biochemical and Biophysical Research Communications, 485(2), 414-420. doi:10.1016/j.bbrc.2017.02.063 es_ES
dc.description.references Xia, Y., Chen, S., Zeng, S., Zhao, Y., Zhu, C., Deng, B., … Ren, W. (2019). Melatonin in macrophage biology: Current understanding and future perspectives. Journal of Pineal Research, 66(2), e12547. doi:10.1111/jpi.12547 es_ES
dc.description.references Hardeland, R. (2018). Melatonin and inflammation-Story of a double-edged blade. Journal of Pineal Research, 65(4), e12525. doi:10.1111/jpi.12525 es_ES
dc.description.references Ma, Q., Reiter, R. J., & Chen, Y. (2019). Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 23(2), 91-104. doi:10.1007/s10456-019-09689-7 es_ES
dc.description.references Ramírez-Fernández, M. P., Calvo-Guirado, J. L., de-Val, J. E.-M. S., Delgado-Ruiz, R. A., Negri, B., Pardo-Zamora, G., … Alcaraz-Baños, M. (2012). Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clinical Oral Investigations, 17(1), 147-158. doi:10.1007/s00784-012-0684-6 es_ES
dc.description.references Reiter, R. J., Mayo, J. C., Tan, D.-X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 61(3), 253-278. doi:10.1111/jpi.12360 es_ES
dc.description.references Araújo-Gomes, N., Romero-Gavilán, F., García-Arnáez, I., Martínez-Ramos, C., Sánchez-Pérez, A. M., Azkargorta, M., … Suay, J. (2018). Osseointegration mechanisms: a proteomic approach. JBIC Journal of Biological Inorganic Chemistry, 23(3), 459-470. doi:10.1007/s00775-018-1553-9 es_ES
dc.description.references Sheikh, Z., Brooks, P., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials, 8(9), 5671-5701. doi:10.3390/ma8095269 es_ES
dc.description.references Romero-Gavilán, F., Araújo-Gomes, N., Cerqueira, A., García-Arnáez, I., Martínez-Ramos, C., Azkargorta, M., … Goñi, I. (2019). Proteomic analysis of calcium-enriched sol–gel biomaterials. JBIC Journal of Biological Inorganic Chemistry, 24(4), 563-574. doi:10.1007/s00775-019-01662-5 es_ES
dc.description.references Romero-Gavilan, F., Sánchez-Pérez, A. M., Araújo-Gomes, N., Azkargorta, M., Iloro, I., Elortza, F., … Suay, J. (2017). Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling, 33(8), 676-689. doi:10.1080/08927014.2017.1356289 es_ES
dc.description.references Zhang, L., Zhang, J., Ling, Y., Chen, C., Liang, A., Peng, Y., … Huang, D. (2012). Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. Journal of Pineal Research, 54(1), 24-32. doi:10.1111/j.1600-079x.2012.01016.x es_ES
dc.description.references Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359-362. doi:10.1038/nmeth.1322 es_ES
dc.description.references Romero-Gavilán, F., Barros-Silva, S., García-Cañadas, J., Palla, B., Izquierdo, R., Gurruchaga, M., … Suay, J. (2016). Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. Journal of Non-Crystalline Solids, 453, 66-73. doi:10.1016/j.jnoncrysol.2016.09.026 es_ES
dc.description.references Li, Y., Zhao, X., Zu, Y., Wang, L., Wu, W., Deng, Y., … Liu, Y. (2017). Melatonin-loaded silica coated with hydroxypropyl methylcellulose phthalate for enhanced oral bioavailability: Preparation, and in vitro-in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 112, 58-66. doi:10.1016/j.ejpb.2016.11.003 es_ES
dc.description.references Juan-Díaz, M. J., Martínez-Ibáñez, M., Hernández-Escolano, M., Cabedo, L., Izquierdo, R., Suay, J., … Goñi, I. (2014). Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 77(11), 1799-1806. doi:10.1016/j.porgcoat.2014.06.004 es_ES
dc.description.references Vishnevskiy, A. S., Seregin, D. S., Vorotilov, K. A., Sigov, A. S., Mogilnikov, K. P., & Baklanov, M. R. (2019). Effect of water content on the structural properties of porous methyl-modified silicate films. Journal of Sol-Gel Science and Technology, 92(2), 273-281. doi:10.1007/s10971-019-05028-w es_ES
dc.description.references Sabzichi, M., Samadi, N., Mohammadian, J., Hamishehkar, H., Akbarzadeh, M., & Molavi, O. (2016). Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids and Surfaces B: Biointerfaces, 145, 64-71. doi:10.1016/j.colsurfb.2016.04.042 es_ES
dc.description.references Son, J.-H., Cho, Y.-C., Sung, I.-Y., Kim, I.-R., Park, B.-S., & Kim, Y.-D. (2014). Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. Journal of Pineal Research, 57(4), 385-392. doi:10.1111/jpi.12177 es_ES
dc.description.references Ping, Z., Hu, X., Wang, L., Shi, J., Tao, Y., Wu, X., … Geng, D. (2017). Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomaterialia, 51, 513-525. doi:10.1016/j.actbio.2017.01.034 es_ES
dc.description.references Cho, N.-H., & Seong, S.-Y. (2009). Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology, 128(1pt2), e479-e486. doi:10.1111/j.1365-2567.2008.03002.x es_ES
dc.description.references Berbee, J. F. P., Havekes, L. M., & Rensen, P. C. N. (2005). Apolipoproteins modulate the inflammatory response to lipopolysaccharide. Journal of Endotoxin Research, 11(2), 97-103. doi:10.1177/09680519050110020501 es_ES
dc.description.references Nesargikar, P., Spiller, B., & Chavez, R. (2012). The complement system: History, pathways, cascade and inhibitors. European Journal of Microbiology and Immunology, 2(2), 103-111. doi:10.1556/eujmi.2.2012.2.2 es_ES
dc.description.references Carroll, M. C. (2004). The complement system in regulation of adaptive immunity. Nature Immunology, 5(10), 981-986. doi:10.1038/ni1113 es_ES
dc.description.references CARROLL, M. (2004). The complement system in B cell regulation. Molecular Immunology, 41(2-3), 141-146. doi:10.1016/j.molimm.2004.03.017 es_ES
dc.description.references Mollnes, T. E., & Kirschfink, M. (2006). Strategies of therapeutic complement inhibition. Molecular Immunology, 43(1-2), 107-121. doi:10.1016/j.molimm.2005.06.014 es_ES
dc.description.references Mauriz, J. L., Collado, P. S., Veneroso, C., Reiter, R. J., & González-Gallego, J. (2012). A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. Journal of Pineal Research, 54(1), 1-14. doi:10.1111/j.1600-079x.2012.01014.x es_ES
dc.description.references Calvo, J. R., González-Yanes, C., & Maldonado, M. D. (2013). The role of melatonin in the cells of the innate immunity: a review. Journal of Pineal Research, 55(2), 103-120. doi:10.1111/jpi.12075 es_ES
dc.description.references Druhan, L. J., Lance, A., Li, S., Price, A. E., Emerson, J. T., Baxter, S. A., … Avalos, B. R. (2017). Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLOS ONE, 12(1), e0170261. doi:10.1371/journal.pone.0170261 es_ES
dc.description.references Park, S.-Y., Jang, W.-J., Yi, E.-Y., Jang, J.-Y., Jung, Y., Jeong, J.-W., & Kim, Y.-J. (2010). Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. Journal of Pineal Research, 48(2), 178-184. doi:10.1111/j.1600-079x.2009.00742.x es_ES
dc.description.references Kim, K.-J., Choi, J.-S., Kang, I., Kim, K.-W., Jeong, C.-H., & Jeong, J.-W. (2012). Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. Journal of Pineal Research, 54(3), 264-270. doi:10.1111/j.1600-079x.2012.01030.x es_ES
dc.description.references Wu, Y. (2015). Contact pathway of coagulation and inflammation. Thrombosis Journal, 13(1). doi:10.1186/s12959-015-0048-y es_ES
dc.description.references Sakharov, D. V., Nagelkerke, J. F., & Rijken, D. C. (1996). Rearrangements of the Fibrin Network and Spatial Distribution of Fibrinolytic Components during Plasma Clot Lysis. Journal of Biological Chemistry, 271(4), 2133-2138. doi:10.1074/jbc.271.4.2133 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem