Contreras, J. J., & Sepúlveda, M. (2014). Bases moleculares de la infección asociada a implantes ortopédicos. Revista chilena de infectología, 31(3), 309-322. doi:10.4067/s0716-10182014000300010
Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025
Surmeneva, M. A., Surmenev, R. A., Nikonova, Y. A., Selezneva, I. I., Ivanova, A. A., Putlyaev, V. I., … Epple, M. (2014). Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Applied Surface Science, 317, 172-180. doi:10.1016/j.apsusc.2014.08.104
[+]
Contreras, J. J., & Sepúlveda, M. (2014). Bases moleculares de la infección asociada a implantes ortopédicos. Revista chilena de infectología, 31(3), 309-322. doi:10.4067/s0716-10182014000300010
Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025
Surmeneva, M. A., Surmenev, R. A., Nikonova, Y. A., Selezneva, I. I., Ivanova, A. A., Putlyaev, V. I., … Epple, M. (2014). Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Applied Surface Science, 317, 172-180. doi:10.1016/j.apsusc.2014.08.104
Surmeneva, M. A., Mukhametkaliyev, T. M., Khakbaz, H., Surmenev, R. A., & Bobby Kannan, M. (2015). Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Materials Letters, 152, 280-282. doi:10.1016/j.matlet.2015.03.140
Yamaguchi, T., Tanaka, Y., & Ide-Ektessabi, A. (2006). Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 249(1-2), 723-725. doi:10.1016/j.nimb.2006.03.126
Gallo, J., Langova, K., Havranek, V., & Cechova, I. (2008). POOR SURVIVAL OF ABG I HIP PROSTHESIS IN YOUNGER PATIENTS. Biomedical Papers, 152(1), 163-168. doi:10.5507/bp.2008.027
Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001
Ciobanu, C. S., Iconaru, S. L., Le Coustumer, P., Constantin, L. V., & Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Research Letters, 7(1). doi:10.1186/1556-276x-7-324
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041
Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B., … Epple, M. (2013). Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces, 102, 724-729. doi:10.1016/j.colsurfb.2012.09.040
Yanovska, A. A., Stanislavov, A. S., Sukhodub, L. B., Kuznetsov, V. N., Illiashenko, V. Y., Danilchenko, S. N., & Sukhodub, L. F. (2014). Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization. Materials Science and Engineering: C, 36, 215-220. doi:10.1016/j.msec.2013.12.011
DeVasConCellos, P., Bose, S., Beyenal, H., Bandyopadhyay, A., & Zirkle, L. G. (2012). Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering: C, 32(5), 1112-1120. doi:10.1016/j.msec.2012.02.020
VALLETREGI, M. (2004). Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32(1-2), 1-31. doi:10.1016/j.progsolidstchem.2004.07.001
Surmenev, R. A., Surmeneva, M. A., Evdokimov, K. E., Pichugin, V. F., Peitsch, T., & Epple, M. (2011). The influence of the deposition parameters on the properties of an rf-magnetron-deposited nanostructured calcium phosphate coating and a possible growth mechanism. Surface and Coatings Technology, 205(12), 3600-3606. doi:10.1016/j.surfcoat.2010.12.039
Surmeneva, M. A., Sharonova, A. A., Chernousova, S., Prymak, O., Loza, K., Tkachev, M. S., … Surmenev, R. A. (2017). Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids and Surfaces B: Biointerfaces, 156, 104-113. doi:10.1016/j.colsurfb.2017.05.016
Mohseni, E., Zalnezhad, E., Bushroa, A. R., Abdel Magid Hamouda, Goh, B. T., & Yoon, G. H. (2015). Ti/TiN/HA coating on Ti–6Al–4V for biomedical applications. Ceramics International, 41(10), 14447-14457. doi:10.1016/j.ceramint.2015.07.081
Ghasemi, S., Shanaghi, A., & Chu, P. K. (2017). Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638, 96-104. doi:10.1016/j.tsf.2017.07.049
Hamdi, D. A., Jiang, Z.-T., No, K., Rahman, M. M., Lee, P.-C., Truc, L. N. T., … Dlugogorski, B. Z. (2019). Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science, 463, 292-299. doi:10.1016/j.apsusc.2018.08.157
Qi, J., Yang, Y., Zhou, M., Chen, Z., & Chen, K. (2019). Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 45(4), 4863-4869. doi:10.1016/j.ceramint.2018.11.183
Lenis, J. A., Hurtado, F. M., Gómez, M. A., & Bolívar, F. J. (2019). Effect of thermal treatment on structure, phase and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Thin Solid Films, 669, 571-578. doi:10.1016/j.tsf.2018.11.045
Lenis, J. A., Gómez, M. A., & Bolívar, F. J. (2019). Effect of deposition temperature and target-substrate distance on the structure, phases, mechanical and tribological properties of multi-layer HA-Ag coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 378, 124936. doi:10.1016/j.surfcoat.2019.124936
Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A., & Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C, 43, 153-163. doi:10.1016/j.msec.2014.07.023
Lenis, J. A., Bejarano, G., Rico, P., Ribelles, J. L. G., & Bolívar, F. J. (2019). Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology, 377, 124856. doi:10.1016/j.surfcoat.2019.06.097
Lenis, J. A., Toro, L. J., & Bolívar, F. J. (2019). Multi-layer bactericidal silver - calcium phosphate coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 367, 203-211. doi:10.1016/j.surfcoat.2019.03.038
Valverde, A., Pérez-Álvarez, L., Ruiz-Rubio, L., Pacha Olivenza, M. A., García Blanco, M. B., Díaz-Fuentes, M., & Vilas-Vilela, J. L. (2019). Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces. Carbohydrate Polymers, 207, 824-833. doi:10.1016/j.carbpol.2018.12.039
Surmeneva, M. A., Chaikina, M. V., Zaikovskiy, V. I., Pichugin, V. F., Buck, V., Prymak, O., … Surmenev, R. A. (2013). The structure of an RF-magnetron sputter-deposited silicate-containing hydroxyapatite-based coating investigated by high-resolution techniques. Surface and Coatings Technology, 218, 39-46. doi:10.1016/j.surfcoat.2012.12.023
Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1
Ding, S.-J., Ju, C.-P., & Lin, J.-H. C. (1999). Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research, 44(3), 266-279. doi:10.1002/(sici)1097-4636(19990305)44:3<266::aid-jbm5>3.0.co;2-4
Ivanova, A. A., Surmeneva, M. A., Tyurin, A. I., Pirozhkova, T. S., Shuvarin, I. A., Prymak, O., … Surmenev, R. A. (2016). Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Applied Surface Science, 360, 929-935. doi:10.1016/j.apsusc.2015.11.087
Contreras Romero, E., Cortínez Osorio, J., Talamantes Soto, R., Hurtado Macías, A., & Gómez Botero, M. (2019). Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN)n coatings: Understanding the effect of quaternary/multilayer volume fraction. Surface and Coatings Technology, 377, 124875. doi:10.1016/j.surfcoat.2019.07.086
Deligianni, D. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241-1251. doi:10.1016/s0142-9612(00)00274-x
Zareidoost, A., Yousefpour, M., Ghaseme, B., & Amanzadeh, A. (2012). The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of Materials Science: Materials in Medicine, 23(6), 1479-1488. doi:10.1007/s10856-012-4611-9
Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., & Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. doi:10.1016/j.jmbbm.2015.02.025
Quirama, A., Echavarría, A. M., Meza, J. M., Osorio, J., & Bejarano G, G. (2017). Improvement of the mechanical behavior of the calcium phosphate coatings deposited onto Ti6Al4V alloy using an intermediate TiN/TiO2 bilayer. Vacuum, 146, 22-30. doi:10.1016/j.vacuum.2017.09.024
Surmeneva, M. A., Kleinhans, C., Vacun, G., Kluger, P. J., Schönhaar, V., Müller, M., … Surmenev, R. A. (2015). Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro. Colloids and Surfaces B: Biointerfaces, 135, 386-393. doi:10.1016/j.colsurfb.2015.07.057
Chen, Y., Zheng, X., Xie, Y., Ji, H., Ding, C., Li, H., & Dai, K. (2010). Silver release from silver-containing hydroxyapatite coatings. Surface and Coatings Technology, 205(7), 1892-1896. doi:10.1016/j.surfcoat.2010.08.073
Actis, L., Gaviria, L., Guda, T., & Ong, J. L. (2013). Antimicrobial surfaces for craniofacial implants: state of the art. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 39(2), 43. doi:10.5125/jkaoms.2013.39.2.43
Parvizi, J., Aggarwal, V., & Rasouli, M. (2013). Periprosthetic joint infection: Current concept. Indian Journal of Orthopaedics, 47(1), 10. doi:10.4103/0019-5413.106884
Redey, S. A., Nardin, M., Bernache-Assolant, D., Rey, C., Delannoy, P., Sedel, L., & Marie, P. J. (2000). Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: Role of surface energy. Journal of Biomedical Materials Research, 50(3), 353-364. doi:10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c
Spriano, S., Bosetti, M., Bronzoni, M., Vernè, E., Maina, G., Bergo, V., & Cannas, M. (2005). Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials, 26(11), 1219-1229. doi:10.1016/j.biomaterials.2004.04.026
Vogler, E. A. (1999). Water and the acute biological response to surfaces. Journal of Biomaterials Science, Polymer Edition, 10(10), 1015-1045. doi:10.1163/156856299x00667
Lim, J. Y., Liu, X., Vogler, E. A., & Donahue, H. J. (2004). Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. Journal of Biomedical Materials Research, 68A(3), 504-512. doi:10.1002/jbm.a.20087
Sengstock, C., Diendorf, J., Epple, M., Schildhauer, T. A., & Köller, M. (2014). Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein Journal of Nanotechnology, 5, 2058-2069. doi:10.3762/bjnano.5.214
Sahuquillo Arce, J. M., Iranzo Tatay, A., Llácer Luna, M., Sanchis Boix, Y., Guitán Deltell, J., González Barberá, E., … Gobernado Serrano, M. (2011). Estudio in vitro de las propiedades antimicrobianas de una espuma de poliuretano que libera iones de plata. Cirugía Española, 89(8), 532-538. doi:10.1016/j.ciresp.2011.02.015
Jamuna-Thevi, K., Bakar, S. A., Ibrahim, S., Shahab, N., & Toff, M. R. M. (2011). Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum, 86(3), 235-241. doi:10.1016/j.vacuum.2011.06.011
Chernousova, S., & Epple, M. (2012). Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angewandte Chemie International Edition, 52(6), 1636-1653. doi:10.1002/anie.201205923
[-]