Mostrar el registro sencillo del ítem
dc.contributor.author | Lenis, J. A. | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Pacha-Olivenza, M. A. | es_ES |
dc.contributor.author | González-Martín, M. L. | es_ES |
dc.contributor.author | Bolívar, F. J. | es_ES |
dc.date.accessioned | 2021-09-09T03:35:46Z | |
dc.date.available | 2021-09-09T03:35:46Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171691 | |
dc.description.abstract | [EN] Biocompatible and antibacterial multi-layer coatings of hydroxyapatite (HA)-Ag/SiO2/TiN/Ti were obtained on the Ti-6Al-4V alloy, by means of the magnetron sputtering technique. During characterization of the coatings, the chemical composition was evaluated by energy dispersive X-ray spectroscopy and the phase analysis was carried out by X-ray diffraction. The morphology of the coatings was observed by field emission scanning electron microscopy, while transmission electron microscopy was used to appreciate their structure. The adhesion of the coatings to the substrate was evaluated by micro scratch test. The in vitro biological response was evaluated in terms of cytotoxicity, adhesion and differentiation of mouse mesenchymal stem cells, as well as adhesion and bacterial viability of Staphylococcus aureus strain. Through the compositional study carried out, the deposition of the HA phase was verified, with a Ca/P ratio close to 1.67 and the characteristic diffraction peaks of this compound. The structural study of the coatings evidenced the obtention of multi-layer architectures. The use of an intermediate SiO2/TiN/Ti trilayer was found to improve adhesion between HA-Ag and the substrate by 84%. Finally, the in vitro biological tests carried out indicated a potentially non-toxic character in the coatings. Additionally, an antibacterial effect was registered at low concentrations of Ag (< 0.25 mg/L). | es_ES |
dc.description.sponsorship | We thank the University of Antioquia, the Centro de Investigacion, Innovacion y Desarrollo de materiales (CIDEMAT) group, the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) for financing the Project 15-1696, the scholarship program of Enlazamundos, the Agencia de Educacion Superior de Medellin (Sapiencia), JLGR acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1-R and MAT 2015-63974-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support). PR acknowledges support from the Spanish Ministry of Science, Innovation and Universities (RTI2018-096794), and Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund, M-ERA.NET PCIN-2016-146 and RTI2018-096862-B-I00, Spanish "Junta de Extremadura" for the projects IB16117, TE-0016-18 and GR18153. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier BV | es_ES |
dc.relation.ispartof | Materials Science and Engineering C: Materials for Biological Applications (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Magnetron sputtering | es_ES |
dc.subject | Multi-layer coating | es_ES |
dc.subject | Hydroxyapatite | es_ES |
dc.subject | Structure | es_ES |
dc.subject | Interface | es_ES |
dc.subject | In vitro biological properties | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA-Ag/SiO2/TiN/Ti coatings obtained by RF magnetron sputtering for biomedical applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.msec.2020.111268 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096794-B-I00/ES/DISEÑO DE MICROENTORNOS CELULARES PARA PROMOVER LA MECANOTRANSDUCCION SINERGICA DE CANALES DE IONES E INTEGRINAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-63974-C4-3-R/ES/CARACTERIZACION SUPERFICIAL Y ADHESION MICROBIANA DE MATERIALES BIODEGRADABLES Y BIOREABSORBIBLES BASE MAGNESIO PARA LA REPARACION DEL HUESO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PCIN-2016-146/ES/SIGNALING IMPLANT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096862-B-I00/ES/RESPUESTA DE LAS PROPIEDADES ADHESIVAS DE PATOGENOS A LA LIBERACION CONTROLADA DE COMPUESTOS ACTIVOS NATURALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Extremadura//IB16117/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Extremadura//TE-0016-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Extremadura//GR18153/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//15-1696/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Lenis, JA.; Rico Tortosa, PM.; Gómez Ribelles, JL.; Pacha-Olivenza, MA.; González-Martín, ML.; Bolívar, FJ. (2020). Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA-Ag/SiO2/TiN/Ti coatings obtained by RF magnetron sputtering for biomedical applications. Materials Science and Engineering C: Materials for Biological Applications (Online). 116:1-13. https://doi.org/10.1016/j.msec.2020.111268 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.msec.2020.111268 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.identifier.eissn | 1873-0191 | es_ES |
dc.identifier.pmid | 32806245 | es_ES |
dc.relation.pasarela | S\433280 | es_ES |
dc.contributor.funder | Junta de Extremadura | es_ES |
dc.contributor.funder | Universidad de Antioquia | es_ES |
dc.contributor.funder | Universidad de Extremadura | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Contreras, J. J., & Sepúlveda, M. (2014). Bases moleculares de la infección asociada a implantes ortopédicos. Revista chilena de infectología, 31(3), 309-322. doi:10.4067/s0716-10182014000300010 | es_ES |
dc.description.references | Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025 | es_ES |
dc.description.references | Surmeneva, M. A., Surmenev, R. A., Nikonova, Y. A., Selezneva, I. I., Ivanova, A. A., Putlyaev, V. I., … Epple, M. (2014). Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Applied Surface Science, 317, 172-180. doi:10.1016/j.apsusc.2014.08.104 | es_ES |
dc.description.references | Surmeneva, M. A., Mukhametkaliyev, T. M., Khakbaz, H., Surmenev, R. A., & Bobby Kannan, M. (2015). Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Materials Letters, 152, 280-282. doi:10.1016/j.matlet.2015.03.140 | es_ES |
dc.description.references | Yamaguchi, T., Tanaka, Y., & Ide-Ektessabi, A. (2006). Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 249(1-2), 723-725. doi:10.1016/j.nimb.2006.03.126 | es_ES |
dc.description.references | Gallo, J., Langova, K., Havranek, V., & Cechova, I. (2008). POOR SURVIVAL OF ABG I HIP PROSTHESIS IN YOUNGER PATIENTS. Biomedical Papers, 152(1), 163-168. doi:10.5507/bp.2008.027 | es_ES |
dc.description.references | Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001 | es_ES |
dc.description.references | Ciobanu, C. S., Iconaru, S. L., Le Coustumer, P., Constantin, L. V., & Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Research Letters, 7(1). doi:10.1186/1556-276x-7-324 | es_ES |
dc.description.references | Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 | es_ES |
dc.description.references | Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041 | es_ES |
dc.description.references | Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B., … Epple, M. (2013). Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces, 102, 724-729. doi:10.1016/j.colsurfb.2012.09.040 | es_ES |
dc.description.references | Yanovska, A. A., Stanislavov, A. S., Sukhodub, L. B., Kuznetsov, V. N., Illiashenko, V. Y., Danilchenko, S. N., & Sukhodub, L. F. (2014). Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization. Materials Science and Engineering: C, 36, 215-220. doi:10.1016/j.msec.2013.12.011 | es_ES |
dc.description.references | DeVasConCellos, P., Bose, S., Beyenal, H., Bandyopadhyay, A., & Zirkle, L. G. (2012). Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering: C, 32(5), 1112-1120. doi:10.1016/j.msec.2012.02.020 | es_ES |
dc.description.references | VALLETREGI, M. (2004). Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32(1-2), 1-31. doi:10.1016/j.progsolidstchem.2004.07.001 | es_ES |
dc.description.references | Surmenev, R. A., Surmeneva, M. A., Evdokimov, K. E., Pichugin, V. F., Peitsch, T., & Epple, M. (2011). The influence of the deposition parameters on the properties of an rf-magnetron-deposited nanostructured calcium phosphate coating and a possible growth mechanism. Surface and Coatings Technology, 205(12), 3600-3606. doi:10.1016/j.surfcoat.2010.12.039 | es_ES |
dc.description.references | Surmeneva, M. A., Sharonova, A. A., Chernousova, S., Prymak, O., Loza, K., Tkachev, M. S., … Surmenev, R. A. (2017). Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids and Surfaces B: Biointerfaces, 156, 104-113. doi:10.1016/j.colsurfb.2017.05.016 | es_ES |
dc.description.references | Mohseni, E., Zalnezhad, E., Bushroa, A. R., Abdel Magid Hamouda, Goh, B. T., & Yoon, G. H. (2015). Ti/TiN/HA coating on Ti–6Al–4V for biomedical applications. Ceramics International, 41(10), 14447-14457. doi:10.1016/j.ceramint.2015.07.081 | es_ES |
dc.description.references | Ghasemi, S., Shanaghi, A., & Chu, P. K. (2017). Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638, 96-104. doi:10.1016/j.tsf.2017.07.049 | es_ES |
dc.description.references | Hamdi, D. A., Jiang, Z.-T., No, K., Rahman, M. M., Lee, P.-C., Truc, L. N. T., … Dlugogorski, B. Z. (2019). Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science, 463, 292-299. doi:10.1016/j.apsusc.2018.08.157 | es_ES |
dc.description.references | Qi, J., Yang, Y., Zhou, M., Chen, Z., & Chen, K. (2019). Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 45(4), 4863-4869. doi:10.1016/j.ceramint.2018.11.183 | es_ES |
dc.description.references | Lenis, J. A., Hurtado, F. M., Gómez, M. A., & Bolívar, F. J. (2019). Effect of thermal treatment on structure, phase and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Thin Solid Films, 669, 571-578. doi:10.1016/j.tsf.2018.11.045 | es_ES |
dc.description.references | Lenis, J. A., Gómez, M. A., & Bolívar, F. J. (2019). Effect of deposition temperature and target-substrate distance on the structure, phases, mechanical and tribological properties of multi-layer HA-Ag coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 378, 124936. doi:10.1016/j.surfcoat.2019.124936 | es_ES |
dc.description.references | Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A., & Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C, 43, 153-163. doi:10.1016/j.msec.2014.07.023 | es_ES |
dc.description.references | Lenis, J. A., Bejarano, G., Rico, P., Ribelles, J. L. G., & Bolívar, F. J. (2019). Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology, 377, 124856. doi:10.1016/j.surfcoat.2019.06.097 | es_ES |
dc.description.references | Lenis, J. A., Toro, L. J., & Bolívar, F. J. (2019). Multi-layer bactericidal silver - calcium phosphate coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 367, 203-211. doi:10.1016/j.surfcoat.2019.03.038 | es_ES |
dc.description.references | Valverde, A., Pérez-Álvarez, L., Ruiz-Rubio, L., Pacha Olivenza, M. A., García Blanco, M. B., Díaz-Fuentes, M., & Vilas-Vilela, J. L. (2019). Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces. Carbohydrate Polymers, 207, 824-833. doi:10.1016/j.carbpol.2018.12.039 | es_ES |
dc.description.references | Surmeneva, M. A., Chaikina, M. V., Zaikovskiy, V. I., Pichugin, V. F., Buck, V., Prymak, O., … Surmenev, R. A. (2013). The structure of an RF-magnetron sputter-deposited silicate-containing hydroxyapatite-based coating investigated by high-resolution techniques. Surface and Coatings Technology, 218, 39-46. doi:10.1016/j.surfcoat.2012.12.023 | es_ES |
dc.description.references | Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1 | es_ES |
dc.description.references | Ding, S.-J., Ju, C.-P., & Lin, J.-H. C. (1999). Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research, 44(3), 266-279. doi:10.1002/(sici)1097-4636(19990305)44:3<266::aid-jbm5>3.0.co;2-4 | es_ES |
dc.description.references | Ivanova, A. A., Surmeneva, M. A., Tyurin, A. I., Pirozhkova, T. S., Shuvarin, I. A., Prymak, O., … Surmenev, R. A. (2016). Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Applied Surface Science, 360, 929-935. doi:10.1016/j.apsusc.2015.11.087 | es_ES |
dc.description.references | Contreras Romero, E., Cortínez Osorio, J., Talamantes Soto, R., Hurtado Macías, A., & Gómez Botero, M. (2019). Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN)n coatings: Understanding the effect of quaternary/multilayer volume fraction. Surface and Coatings Technology, 377, 124875. doi:10.1016/j.surfcoat.2019.07.086 | es_ES |
dc.description.references | Deligianni, D. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241-1251. doi:10.1016/s0142-9612(00)00274-x | es_ES |
dc.description.references | Zareidoost, A., Yousefpour, M., Ghaseme, B., & Amanzadeh, A. (2012). The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of Materials Science: Materials in Medicine, 23(6), 1479-1488. doi:10.1007/s10856-012-4611-9 | es_ES |
dc.description.references | Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., & Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. doi:10.1016/j.jmbbm.2015.02.025 | es_ES |
dc.description.references | Quirama, A., Echavarría, A. M., Meza, J. M., Osorio, J., & Bejarano G, G. (2017). Improvement of the mechanical behavior of the calcium phosphate coatings deposited onto Ti6Al4V alloy using an intermediate TiN/TiO2 bilayer. Vacuum, 146, 22-30. doi:10.1016/j.vacuum.2017.09.024 | es_ES |
dc.description.references | Surmeneva, M. A., Kleinhans, C., Vacun, G., Kluger, P. J., Schönhaar, V., Müller, M., … Surmenev, R. A. (2015). Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro. Colloids and Surfaces B: Biointerfaces, 135, 386-393. doi:10.1016/j.colsurfb.2015.07.057 | es_ES |
dc.description.references | Chen, Y., Zheng, X., Xie, Y., Ji, H., Ding, C., Li, H., & Dai, K. (2010). Silver release from silver-containing hydroxyapatite coatings. Surface and Coatings Technology, 205(7), 1892-1896. doi:10.1016/j.surfcoat.2010.08.073 | es_ES |
dc.description.references | Actis, L., Gaviria, L., Guda, T., & Ong, J. L. (2013). Antimicrobial surfaces for craniofacial implants: state of the art. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 39(2), 43. doi:10.5125/jkaoms.2013.39.2.43 | es_ES |
dc.description.references | Parvizi, J., Aggarwal, V., & Rasouli, M. (2013). Periprosthetic joint infection: Current concept. Indian Journal of Orthopaedics, 47(1), 10. doi:10.4103/0019-5413.106884 | es_ES |
dc.description.references | Redey, S. A., Nardin, M., Bernache-Assolant, D., Rey, C., Delannoy, P., Sedel, L., & Marie, P. J. (2000). Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: Role of surface energy. Journal of Biomedical Materials Research, 50(3), 353-364. doi:10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c | es_ES |
dc.description.references | Spriano, S., Bosetti, M., Bronzoni, M., Vernè, E., Maina, G., Bergo, V., & Cannas, M. (2005). Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials, 26(11), 1219-1229. doi:10.1016/j.biomaterials.2004.04.026 | es_ES |
dc.description.references | Vogler, E. A. (1999). Water and the acute biological response to surfaces. Journal of Biomaterials Science, Polymer Edition, 10(10), 1015-1045. doi:10.1163/156856299x00667 | es_ES |
dc.description.references | Lim, J. Y., Liu, X., Vogler, E. A., & Donahue, H. J. (2004). Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. Journal of Biomedical Materials Research, 68A(3), 504-512. doi:10.1002/jbm.a.20087 | es_ES |
dc.description.references | Sengstock, C., Diendorf, J., Epple, M., Schildhauer, T. A., & Köller, M. (2014). Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein Journal of Nanotechnology, 5, 2058-2069. doi:10.3762/bjnano.5.214 | es_ES |
dc.description.references | Sahuquillo Arce, J. M., Iranzo Tatay, A., Llácer Luna, M., Sanchis Boix, Y., Guitán Deltell, J., González Barberá, E., … Gobernado Serrano, M. (2011). Estudio in vitro de las propiedades antimicrobianas de una espuma de poliuretano que libera iones de plata. Cirugía Española, 89(8), 532-538. doi:10.1016/j.ciresp.2011.02.015 | es_ES |
dc.description.references | Jamuna-Thevi, K., Bakar, S. A., Ibrahim, S., Shahab, N., & Toff, M. R. M. (2011). Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum, 86(3), 235-241. doi:10.1016/j.vacuum.2011.06.011 | es_ES |
dc.description.references | Chernousova, S., & Epple, M. (2012). Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angewandte Chemie International Edition, 52(6), 1636-1653. doi:10.1002/anie.201205923 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |