- -

The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrade, Johana es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2021-09-09T03:36:05Z
dc.date.available 2021-09-09T03:36:05Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171698
dc.description.abstract [EN] Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films. es_ES
dc.description.sponsorship This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Doctoral grant of author Johana Andrade was funded by the Departamento de Narino-Colombia y la Fundacion CEIBA es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Food packaging es_ES
dc.subject Encapsulation es_ES
dc.subject PVA es_ES
dc.subject Degree of hydrolysis es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12020497 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Andrade, J.; González Martínez, MC.; Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers. 12(2):1-18. https://doi.org/10.3390/polym12020497 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12020497 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32102448 es_ES
dc.identifier.pmcid PMC7077722 es_ES
dc.relation.pasarela S\404763 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Thong, C. C., Teo, D. C. L., & Ng, C. K. (2016). Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Construction and Building Materials, 107, 172-180. doi:10.1016/j.conbuildmat.2015.12.188 es_ES
dc.description.references Li, R., Wang, Y., Xu, J., Ahmed, S., & Liu, Y. (2019). Preparation and Characterization of Ultrasound Treated Polyvinyl Alcohol/Chitosan/DMC Antimicrobial Films. Coatings, 9(9), 582. doi:10.3390/coatings9090582 es_ES
dc.description.references Muppalaneni, srinath. (2013). Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. Journal of Developing Drugs, 02(03). doi:10.4172/2329-6631.1000112 es_ES
dc.description.references Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008 es_ES
dc.description.references Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106 es_ES
dc.description.references De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002 es_ES
dc.description.references Veldhuizen, E. J. A., Tjeerdsma-van Bokhoven, J. L. M., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. (2006). Structural Requirements for the Antimicrobial Activity of Carvacrol. Journal of Agricultural and Food Chemistry, 54(5), 1874-1879. doi:10.1021/jf052564y es_ES
dc.description.references Gursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805-810. doi:10.1016/j.foodchem.2018.11.134 es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Cofelice, Cuomo, & Chiralt. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces, 3(3), 58. doi:10.3390/colloids3030058 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008 es_ES
dc.description.references Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028 es_ES
dc.description.references Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004 es_ES
dc.description.references Asbahani, A. E., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., … Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1-2), 220-243. doi:10.1016/j.ijpharm.2014.12.069 es_ES
dc.description.references Callegarin, F., Quezada Gallo, J.-A., Debeaufort, F., & Voilley, A. (1997). Lipids and biopackaging. Journal of the American Oil Chemists’ Society, 74(10), 1183-1192. doi:10.1007/s11746-997-0044-x es_ES
dc.description.references Coimbra, M., Isacchi, B., van Bloois, L., Torano, J. S., Ket, A., Wu, X., … Schiffelers, R. M. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. International Journal of Pharmaceutics, 416(2), 433-442. doi:10.1016/j.ijpharm.2011.01.056 es_ES
dc.description.references Sebaaly, C., Greige-Gerges, H., Stainmesse, S., Fessi, H., & Charcosset, C. (2016). Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Bioscience, 15, 1-10. doi:10.1016/j.fbio.2016.04.005 es_ES
dc.description.references Sebaaly, C., Charcosset, C., Stainmesse, S., Fessi, H., & Greige-Gerges, H. (2016). Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor. Carbohydrate Polymers, 138, 75-85. doi:10.1016/j.carbpol.2015.11.053 es_ES
dc.description.references Carvalho, I. T., Estevinho, B. N., & Santos, L. (2015). Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. International Journal of Cosmetic Science, 38(2), 109-119. doi:10.1111/ics.12232 es_ES
dc.description.references Hammoud, Z., Gharib, R., Fourmentin, S., Elaissari, A., & Greige-Gerges, H. (2019). New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. International Journal of Pharmaceutics, 561, 161-170. doi:10.1016/j.ijpharm.2019.02.022 es_ES
dc.description.references Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143 es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 es_ES
dc.description.references Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136. doi:10.1016/j.jfoodeng.2010.10.007 es_ES
dc.description.references Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006 es_ES
dc.description.references Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids, 29(1), 226-233. doi:10.1016/j.foodhyd.2012.03.007 es_ES
dc.description.references Reiner, G. N., Fraceto, L. F., Paula, E. de, Perillo, M. A., & García, D. A. (2013). Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by <sup>1</sup>H-NMR. Journal of Biomaterials and Nanobiotechnology, 04(03), 28-34. doi:10.4236/jbnb.2013.43a004 es_ES
dc.description.references Reiner, G. N., Perillo, M. A., & García, D. A. (2013). Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids and Surfaces B: Biointerfaces, 101, 61-67. doi:10.1016/j.colsurfb.2012.06.004 es_ES
dc.description.references Andrade, J., González-Martínez, C., & Chiralt, A. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability, 179, 109282. doi:10.1016/j.polymdegradstab.2020.109282 es_ES
dc.description.references Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290 es_ES
dc.description.references Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054 es_ES
dc.description.references Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028 es_ES
dc.description.references Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763 es_ES
dc.description.references Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020 es_ES
dc.description.references Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003 es_ES
dc.description.references Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100, 541-550. doi:10.1016/j.foodres.2017.07.052 es_ES
dc.description.references Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293, 72-78. doi:10.1016/j.ijfoodmicro.2019.01.006 es_ES
dc.description.references Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6 es_ES
dc.description.references Cai, H., Dave, V., Gross, R. A., & McCarthy, S. P. (1996). Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 34(16), 2701-2708. doi:10.1002/(sici)1099-0488(19961130)34:16<2701::aid-polb2>3.0.co;2-s es_ES
dc.description.references McHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841-845. doi:10.1021/jf00040a001 es_ES
dc.description.references Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117 es_ES
dc.description.references Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094 es_ES
dc.description.references Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004 es_ES
dc.description.references Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006 es_ES
dc.description.references Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem