- -

Auto-routing algorithm for field-programmable photonic gate arrays

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Auto-routing algorithm for field-programmable photonic gate arrays

Show full item record

López-Hernández, A.; Pérez-López, D.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Auto-routing algorithm for field-programmable photonic gate arrays. Optics Express. 28(1):737-752. https://doi.org/10.1364/oe.382753

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171699

Files in this item

Item Metadata

Title: Auto-routing algorithm for field-programmable photonic gate arrays
Author: López-Hernández, Aitor Pérez-López, Daniel Dasmahapatra, Prometheus Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Issued date:
Abstract:
[EN] Programmable multipurpose photonic integrated circuits require software routines to make use of their flexible operation as desired. In this work, we propose and demonstrate the use of a modified tree-search algorithm ...[+]
Subjects: Programmable photonics , Integrated optics
Copyrigths: Reconocimiento (by)
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/oe.382753
Publisher:
The Optical Society
Publisher version: https://doi.org/10.1364/oe.382753
Project ID:
info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/
info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F031/ES/ADVANCED INSTRUMENTATION FOR WORLD CLASS MICROWAVE PHOTONICS RESEARCH/
info:eu-repo/grantAgreement/AEI//EQC2018-004683-P/ES/INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/
Thanks:
The authors acknowledge financial support by the ERC ADG-2016 UMWP-Chip ERC-2016- ADG-741415, the ERC PoC-2019 FPPAs ERC-2019-POC-859927, the Generalitat Valenciana Future MWP technologies and applications PROMETEO 2017/103 ...[+]
Type: Artículo

References

Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Streshinsky, M., Ding, R., Liu, Y., Novack, A., Galland, C., Lim, A. E.-J., … Hochberg, M. (2013). The Road to Affordable, Large-Scale Silicon Photonics. Optics and Photonics News, 24(9), 32. doi:10.1364/opn.24.9.000032

Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 [+]
Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Streshinsky, M., Ding, R., Liu, Y., Novack, A., Galland, C., Lim, A. E.-J., … Hochberg, M. (2013). The Road to Affordable, Large-Scale Silicon Photonics. Optics and Photonics News, 24(9), 32. doi:10.1364/opn.24.9.000032

Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001

Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426

Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1

Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390

McQuillan, J., Richer, I., & Rosen, E. (1980). The New Routing Algorithm for the ARPANET. IEEE Transactions on Communications, 28(5), 711-719. doi:10.1109/tcom.1980.1094721

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record