Mostrar el registro sencillo del ítem
dc.contributor.author | López-Hernández, Aitor | es_ES |
dc.contributor.author | Pérez-López, Daniel | es_ES |
dc.contributor.author | Dasmahapatra, Prometheus | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.date.accessioned | 2021-09-09T03:36:06Z | |
dc.date.available | 2021-09-09T03:36:06Z | |
dc.date.issued | 2020-01-06 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171699 | |
dc.description.abstract | [EN] Programmable multipurpose photonic integrated circuits require software routines to make use of their flexible operation as desired. In this work, we propose and demonstrate the use of a modified tree-search algorithm to automatically determine the optimum optical path in a field-programmable photonic gate array (FPPGA), based on end-user specifications, circuit architecture and imperfections in the realized FPPGA arising, for example, from fabrication variations. In such a scenario, the proposed algorithm only requires the hardware topology and the location of the connections of the FPPGA defining the optical path to be programmed. The routine is able to optimize the path over multiple and competing objectives like the overall length, accumulated loss and power consumption. In addition, should any region of the circuit suffer from any potential damage that may affect the device performance, this algorithm is also able to provide basic self-healing and fault-tolerance capabilities by supplying alternative paths through the photonic arrangement. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support by the ERC ADG-2016 UMWP-Chip ERC-2016- ADG-741415, the ERC PoC-2019 FPPAs ERC-2019-POC-859927, the Generalitat Valenciana Future MWP technologies and applications PROMETEO 2017/103 research excellency award, and the COST Action CA16220 EUIMWP, the Advanced Instrumentation for World Class Microwave Photonics Research IDIFEDER/2018/031 and the Infraestructura para caracterizacion de Chips Fotonicos EQC2018-004683-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Programmable photonics | es_ES |
dc.subject | Integrated optics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Auto-routing algorithm for field-programmable photonic gate arrays | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/oe.382753 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F031/ES/ADVANCED INSTRUMENTATION FOR WORLD CLASS MICROWAVE PHOTONICS RESEARCH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//EQC2018-004683-P/ES/INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | López-Hernández, A.; Pérez-López, D.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Auto-routing algorithm for field-programmable photonic gate arrays. Optics Express. 28(1):737-752. https://doi.org/10.1364/oe.382753 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/oe.382753 | es_ES |
dc.description.upvformatpinicio | 737 | es_ES |
dc.description.upvformatpfin | 752 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32118996 | es_ES |
dc.relation.pasarela | S\400584 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.description.references | Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 | es_ES |
dc.description.references | Streshinsky, M., Ding, R., Liu, Y., Novack, A., Galland, C., Lim, A. E.-J., … Hochberg, M. (2013). The Road to Affordable, Large-Scale Silicon Photonics. Optics and Photonics News, 24(9), 32. doi:10.1364/opn.24.9.000032 | es_ES |
dc.description.references | Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 | es_ES |
dc.description.references | Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 | es_ES |
dc.description.references | Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 | es_ES |
dc.description.references | Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019 | es_ES |
dc.description.references | Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390 | es_ES |
dc.description.references | McQuillan, J., Richer, I., & Rosen, E. (1980). The New Routing Algorithm for the ARPANET. IEEE Transactions on Communications, 28(5), 711-719. doi:10.1109/tcom.1980.1094721 | es_ES |