- -

Auto-routing algorithm for field-programmable photonic gate arrays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Auto-routing algorithm for field-programmable photonic gate arrays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Hernández, Aitor es_ES
dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Dasmahapatra, Prometheus es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2021-09-09T03:36:06Z
dc.date.available 2021-09-09T03:36:06Z
dc.date.issued 2020-01-06 es_ES
dc.identifier.issn 1094-4087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171699
dc.description.abstract [EN] Programmable multipurpose photonic integrated circuits require software routines to make use of their flexible operation as desired. In this work, we propose and demonstrate the use of a modified tree-search algorithm to automatically determine the optimum optical path in a field-programmable photonic gate array (FPPGA), based on end-user specifications, circuit architecture and imperfections in the realized FPPGA arising, for example, from fabrication variations. In such a scenario, the proposed algorithm only requires the hardware topology and the location of the connections of the FPPGA defining the optical path to be programmed. The routine is able to optimize the path over multiple and competing objectives like the overall length, accumulated loss and power consumption. In addition, should any region of the circuit suffer from any potential damage that may affect the device performance, this algorithm is also able to provide basic self-healing and fault-tolerance capabilities by supplying alternative paths through the photonic arrangement. es_ES
dc.description.sponsorship The authors acknowledge financial support by the ERC ADG-2016 UMWP-Chip ERC-2016- ADG-741415, the ERC PoC-2019 FPPAs ERC-2019-POC-859927, the Generalitat Valenciana Future MWP technologies and applications PROMETEO 2017/103 research excellency award, and the COST Action CA16220 EUIMWP, the Advanced Instrumentation for World Class Microwave Photonics Research IDIFEDER/2018/031 and the Infraestructura para caracterizacion de Chips Fotonicos EQC2018-004683-P es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Programmable photonics es_ES
dc.subject Integrated optics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Auto-routing algorithm for field-programmable photonic gate arrays es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/oe.382753 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F031/ES/ADVANCED INSTRUMENTATION FOR WORLD CLASS MICROWAVE PHOTONICS RESEARCH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2018-004683-P/ES/INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation López-Hernández, A.; Pérez-López, D.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Auto-routing algorithm for field-programmable photonic gate arrays. Optics Express. 28(1):737-752. https://doi.org/10.1364/oe.382753 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/oe.382753 es_ES
dc.description.upvformatpinicio 737 es_ES
dc.description.upvformatpfin 752 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32118996 es_ES
dc.relation.pasarela S\400584 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 es_ES
dc.description.references Streshinsky, M., Ding, R., Liu, Y., Novack, A., Galland, C., Lim, A. E.-J., … Hochberg, M. (2013). The Road to Affordable, Large-Scale Silicon Photonics. Optics and Photonics News, 24(9), 32. doi:10.1364/opn.24.9.000032 es_ES
dc.description.references Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 es_ES
dc.description.references Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426 es_ES
dc.description.references Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265 es_ES
dc.description.references Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 es_ES
dc.description.references Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 es_ES
dc.description.references Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019 es_ES
dc.description.references Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390 es_ES
dc.description.references McQuillan, J., Richer, I., & Rosen, E. (1980). The New Routing Algorithm for the ARPANET. IEEE Transactions on Communications, 28(5), 711-719. doi:10.1109/tcom.1980.1094721 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem