- -

Universidades en Google: hacia un modelo de análisis multinivel del posicionamiento web académico

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Universidades en Google: hacia un modelo de análisis multinivel del posicionamiento web académico

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Llinares, Javier es_ES
dc.contributor.author Font-Julian, Cristina I. es_ES
dc.contributor.author Orduña-Malea, Enrique es_ES
dc.date.accessioned 2021-09-09T03:36:09Z
dc.date.available 2021-09-09T03:36:09Z
dc.date.issued 2020-06-30 es_ES
dc.identifier.issn 0210-0614 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171700
dc.description.abstract [EN] We propose a model of analysis of the web positioning of universities based on a vocabulary of keywords categorized according to the different university mission; it is applied to a university (Universitat Politècnica de València) to check its suitability. From a vocabulary of 164 keywords, 290 web queries were built and executed on Google, collecting the first 20 results obtained for each query. The results confirm that the universities obtain a variable web positioning according to the dimension linked to the web query and that the web pages related to teaching (especially Degrees) obtain the best ranks, even when executing web queries oriented to research. However, a low position is observed not only for the UPV, but also for all the Spanish on-site public universities (only a 27% of the Top 20 ranks correspond to these universities). It is concluded that a multilevel analysis is necessary to study the web positioning of the universities and that the proposed model is both viable and scalable. However certain limitations must be taken into account, as the dependence of the vocabulary used and the high variability of data, that must be considered in the design of this type of analysis models es_ES
dc.description.abstract [ES] Se propone un modelo de análisis del posicionamiento web de universidades basado en un vocabulario de palabras clave categorizadas según las distintas misiones universitarias, que se aplica a una universidad (Universitat Politècnica de València) para comprobar su idoneidad. A partir de un vocabulario de 164 palabras clave se construyeron 290 consultas web que fueron ejecutadas en Google, recopilando los 20 primeros resultados obtenidos para cada consulta. Los resultados confirman que las universidades obtienen un posicionamiento web variable en función de la dimensión vinculada a la consulta web y que las páginas web vinculadas a la docencia (especialmente Grados) son las que mejor posicionan, incluso para consultas web orientadas a investigación. Con todo, se observa un posicionamiento bajo no sólo para la UPV sino para las universidades públicas presenciales españolas (sólo el 27% del total de resultados en el Top 20 corresponde a alguna de estas universidades). Se concluye que el análisis multinivel es necesario para estudiar el posicionamiento web de las universidades y que el modelo propuesto es viable y escalable. No obstante, se han identificado ciertas limitaciones (dependencia del vocabulario utilizado y alta variabilidad de datos) que deben tenerse en cuenta en el diseño de este tipo de modelos de análisis. es_ES
dc.language Español es_ES
dc.publisher Departmento de Publicaciones del CSIC es_ES
dc.relation.ispartof Revista española de Documentación Científica es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Motores de búsqueda es_ES
dc.subject Optimización en motores de búsqueda es_ES
dc.subject SEO es_ES
dc.subject SEO académico es_ES
dc.subject Cibermetría es_ES
dc.subject Universidades es_ES
dc.subject Visibilidad web es_ES
dc.subject Posicionamiento web es_ES
dc.subject Google es_ES
dc.subject Modelo de evaluación es_ES
dc.subject Search Engines es_ES
dc.subject Search engine optimization es_ES
dc.subject Academic SEO es_ES
dc.subject Webometrics es_ES
dc.subject Universities es_ES
dc.subject Web visibility es_ES
dc.subject Web positioning es_ES
dc.subject Evaluation model es_ES
dc.subject.classification BIBLIOTECONOMIA Y DOCUMENTACION es_ES
dc.title Universidades en Google: hacia un modelo de análisis multinivel del posicionamiento web académico es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3989/redc.2020.2.1691 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Gonzalez-Llinares, J.; Font-Julian, CI.; Orduña-Malea, E. (2020). Universidades en Google: hacia un modelo de análisis multinivel del posicionamiento web académico. Revista española de Documentación Científica. 43(2):1-18. https://doi.org/10.3989/redc.2020.2.1691 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3989/redc.2020.2.1691 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\413835 es_ES
dc.description.references 1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (2020) 395:497-506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5 es_ES
dc.description.references 2. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181:271-280.e8. doi: https://doi.org/10.1016/j.cell.2020.02.052 es_ES
dc.description.references 3. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res (2020) 126:1456-1474. es_ES
dc.description.references 4. Johnson KD, Harris C, Cain JK, Hummer C, Goyal H, Perisetti A. Pulmonary and Extra-Pulmonary Clinical Manifestations of COVID-19. Front Med (2020) 7:526. es_ES
dc.description.references 5. Perisetti A, Goyal H, Gajendran M, Boregowda U, Mann R, Sharma N. Prevalence, Mechanisms, and Implications of Gastrointestinal Symptoms in COVID-19. Front Med (2020) 7:588711. es_ES
dc.description.references 6. Mann R, Perisetti A, Gajendran M, Gandhi Z, Umapathy C, Goyal H. Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks . Front Med (2020) 7:766. Available at: https://www.frontiersin.org/article/10.3389/fmed.2020.581521 es_ES
dc.description.references 7. Nanshan C, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (2020) 395:507-513. es_ES
dc.description.references 8. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama (2020) 323:1239-1242. es_ES
dc.description.references 9. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Consortium and the NC-19 R. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA (2020) 323:2052-2059. es_ES
dc.description.references 10. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med (2020) 180:934-943. es_ES
dc.description.references 11. Garg S, Kim L, Whitaker M, O'Halloran A, Cummings C, Holstein R, Prill M, Chai SJ, Kirley PD, Alden NB, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep (2020) 69:458-464. es_ES
dc.description.references 12. Kopel J, Perisetti A, Roghani A, Aziz M, Gajendran M, Goyal H. Racial and Gender-Based Differences in COVID-19. Front public Heal (2020) 8:418. es_ES
dc.description.references 13. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature (2020) 584:463-469. es_ES
dc.description.references 14. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Pere H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe Covid-19 patients. medRxiv (2020)2020.04.19.20068015. es_ES
dc.description.references 15. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol (2020) 20:355-362. es_ES
dc.description.references 16. Franke L (Severe C-19 GG. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med (2020) 383:1522-1534. es_ES
dc.description.references 17. Rabaan AA, Al-Ahmed SH, Sah R, Tiwari R, Yatoo MI, Patel SK, Pathak M, Malik YS, Dhama K, Singh KP, et al. SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Ann Clin Microbiol Antimicrob (2020) 19:40. es_ES
dc.description.references 18. Sharun K, Tiwari R, Iqbal Yatoo M, Patel SK, Natesan S, Dhama J, Malik YS, Harapan H, Singh RK, Dhama K. Antibody-based immunotherapeutics and use of convalescent plasma to counter COVID-19: advances and prospects. Expert Opin Biol Ther (2020) 20:1033-1046. es_ES
dc.description.references 19. Keam S, Megawati D, Patel SK, Tiwari R, Dhama K, Harapan H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol (2020) 30:e2123-e2123. es_ES
dc.description.references 20. RECOVERY. No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY. (2020) Available at: https://www.recoverytrial.net/news/no-clinical-benefit-from-use-of-lopinavir-ritonavir-in-hospitalised-covid-19-patients-studied-in-recovery [Accessed September 14, 2020] es_ES
dc.description.references 21. Group RC, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, Wiselka M, Ustianowski A, Elmahi E, et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med (2020)NEJMoa2022926. es_ES
dc.description.references 22. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). Br Med J (2020) 371:m3939. es_ES
dc.description.references 23. Gould J. The Cannabis Crop. Nature (2015) 525:S2-S3. es_ES
dc.description.references 24. Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front Plant Sci (2016) 7:19. es_ES
dc.description.references 25. Mechoulam R, Hanuš LO, Pertwee R, Howlett AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci (2014) 15:757-764. es_ES
dc.description.references 26. Costiniuk CT, Saneei Z, Routy J-P, Margolese S, Mandarino E, Singer J, Lebouché B, Cox J, Szabo J, Brouillette M-J, et al. Oral cannabinoids in people living with HIV on effective antiretroviral therapy: CTN PT028-study protocol for a pilot randomised trial to assess safety, tolerability and effect on immune activation. BMJ Open (2019) 9:e024793-e024793. es_ES
dc.description.references 27. Lowe HIC, Toyang NJ, McLaughlin W. Potential of Cannabidiol for the Treatment of Viral Hepatitis. Pharmacognosy Res (2017) 9:116-118. es_ES
dc.description.references 28. Karmaus PWF, Chen W, Crawford R, Kaplan BLF, Kaminski NE. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2. Toxicol Sci (2013) 131:419-433. es_ES
dc.description.references 29. Buchweitz J, Karamaus P, Williams K, Harkema J, Kaminsky N. Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of D9-tetrahydrocannabinol. J Leukoc Biol (2008) 83:785-796. es_ES
dc.description.references 30. Tahamtan A, Tavakoli‐Yaraki M, Rygiel TP, Mokhtari‐Azad T, Salimi V. Effects of cannabinoids and their receptors on viral infections. J Med Virol (2016) 88:1-12. es_ES
dc.description.references 31. Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature (2021) es_ES
dc.description.references 32. Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, Penrice-Randal R, Millar T, Lerpiniere CEB, Tagliavini G, Hartley CS, et al. Tissue-specific tolerance in fatal Covid-19. medRxiv (2020)2020.07.02.20145003. es_ES
dc.description.references 33. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med (2020) 18:206. es_ES
dc.description.references 34. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med (2020) 26:842-844. es_ES
dc.description.references 35. Dhama K, Patel SK, Pathak M, Yatoo MI, Tiwari R, Malik YS, Singh R, Sah R, Rabaan AA, Bonilla-Aldana DK, et al. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med Infect Dis (2020) 37:101755. doi: https://doi.org/10.1016/j.tmaid.2020.101755 es_ES
dc.description.references 36. Vaduganathan M, Vardeny O, Michel T, McMurray JJ V, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med (2020) 382:1653-1659. es_ES
dc.description.references 37. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med (2020) 74:14-20. es_ES
dc.description.references 38. Chen Y, Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, Liu L, Wang C, Liu Y, et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. medRxiv (2020)2020.03.27.20045427. es_ES
dc.description.references 39. Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang D-E, Trilling M, Klingel K, Sauter M, Kandolf R, Gailus N, et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol (2012) 13:51-57. es_ES
dc.description.references 40. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol (2020) 20:351. es_ES
dc.description.references 41. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe (2016) 19:181-193. es_ES
dc.description.references 42. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, Guo D, Hu W, Yang J, Tang Z, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect (2020) 9:761-770. es_ES
dc.description.references 43. Koenig LM, Boehmer DFR, Metzger P, Schnurr M, Endres S, Rothenfusser S. Blocking inflammation on the way: Rationale for CXCR2 antagonists for the treatment of COVID-19. J Exp Med (2020) 217: es_ES
dc.description.references 44. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight (2020) 5: es_ES
dc.description.references 45. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis (2020) 71:762-768. es_ES
dc.description.references 46. Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov (2020) 6:31. es_ES
dc.description.references 47. Gupta S, Bi R, Kim C, Chiplunkar S, Yel L, Gollapudi S. Role of NF-κB signaling pathway in increased tumor necrosis factor-α-induced apoptosis of lymphocytes in aged humans. Cell Death Differ (2005) 12:177-183. es_ES
dc.description.references 48. Davis GS, Brody AR, Craighead JE. Analysis of Airspace and Interstitial Mononuclear Cell Populations in Human Diffuse Interstitial Lung Disease. Am Rev Respir Dis (1978) 118:7-15. es_ES
dc.description.references 49. Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, van den Akker JPC, Molenkamp R, Koopmans MPG, van Gorp ECM, et al. Phenotype of SARS-CoV-2-specific T-cells in COVID-19 patients with acute respiratory distress syndrome. medRxiv (2020)2020.04.11.20062349. es_ES
dc.description.references 50. Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P, Dong X-Q, Zheng Y-T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol (2020) 17:541-543. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem