- -

Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain

Mostrar el registro completo del ítem

Ruiz-Padilla, A.; Redondo, C.; Asensio, A.; Garita-Cambronero, J.; Martinez, C.; Perez-Padilla, V.; Marquinez, R.... (2020). Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain. Microorganisms. 8(9):1-19. https://doi.org/10.3390/microorganisms8091446

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171996

Ficheros en el ítem

Metadatos del ítem

Título: Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain
Autor: Ruiz-Padilla, Ana Redondo, Cristina Asensio, Adrian Garita-Cambronero, Jerson Martinez, Carmen Perez-Padilla, Verónica Marquinez, Raquel Collar, Jesus Garcia-Mendez, Eva Alfaro Fernández, Ana Olvido Asensio-S-Manzanera, Carmen Palomo, José Luis Siverio, Felipe De Leon, Leandro Cubero, Jaime
Entidad UPV: Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Fecha difusión:
Resumen:
[EN] Liberibacteris a bacterial group causing different diseases and disorders in plants. Among liberibacters,CandidatusLiberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and ...[+]
Palabras clave: Liberibacter , Zebra chip , MLSA , Potato , Carrot , Parsnip , Celery , Citrus , HLB
Derechos de uso: Reconocimiento (by)
Fuente:
Microorganisms. (eissn: 2076-2607 )
DOI: 10.3390/microorganisms8091446
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/microorganisms8091446
Código del Proyecto:
info:eu-repo/grantAgreement/INIA//AT2016-007/
info:eu-repo/grantAgreement/MINECO//E-RTA2014-00010-C02-02/ES/Epidemiología del STV y su implicación en el "síndrome del falso PepMV"/
Agradecimientos:
This research was funded by Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), grant numbers AT2016-007 and RTA2014-00008-C04-03-E, co-financed by FEDER.
Tipo: Artículo

References

Haapalainen, M. (2014). Biology and epidemics ofCandidatusLiberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165(2), 172-198. doi:10.1111/aab.12149

Raddadi, N., Gonella, E., Camerota, C., Pizzinat, A., Tedeschi, R., Crotti, E., … Alma, A. (2010). ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology, 13(2), 414-426. doi:10.1111/j.1462-2920.2010.02347.x

Wang, N., Pierson, E. A., Setubal, J. C., Xu, J., Levy, J. G., Zhang, Y., … Martins, J. (2017). The Candidatus Liberibacter–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. Annual Review of Phytopathology, 55(1), 451-482. doi:10.1146/annurev-phyto-080516-035513 [+]
Haapalainen, M. (2014). Biology and epidemics ofCandidatusLiberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165(2), 172-198. doi:10.1111/aab.12149

Raddadi, N., Gonella, E., Camerota, C., Pizzinat, A., Tedeschi, R., Crotti, E., … Alma, A. (2010). ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology, 13(2), 414-426. doi:10.1111/j.1462-2920.2010.02347.x

Wang, N., Pierson, E. A., Setubal, J. C., Xu, J., Levy, J. G., Zhang, Y., … Martins, J. (2017). The Candidatus Liberibacter–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. Annual Review of Phytopathology, 55(1), 451-482. doi:10.1146/annurev-phyto-080516-035513

Morris, J., Shiller, J., Mann, R., Smith, G., Yen, A., & Rodoni, B. (2017). Novel ‘Candidatus Liberibacter’ species identified in the Australian eggplant psyllid, Acizzia solanicola. Microbial Biotechnology, 10(4), 833-844. doi:10.1111/1751-7915.12707

Alfaro-Fernández, A., Hernández-Llopis, D., & Font, M. I. (2017). Haplotypes of ‘Candidatus Liberibacter solanacearum’ identified in Umbeliferous crops in Spain. European Journal of Plant Pathology, 149(1), 127-131. doi:10.1007/s10658-017-1172-2

Haapalainen, M., Wang, J., Latvala, S., Lehtonen, M. T., Pirhonen, M., & Nissinen, A. I. (2018). Genetic Variation of ‘Candidatus Liberibacter solanacearum’ Haplotype C and Identification of a Novel Haplotype from Trioza urticae and Stinging Nettle. Phytopathology®, 108(8), 925-934. doi:10.1094/phyto-12-17-0410-r

Haapalainen, M., Latvala, S., Wickström, A., Wang, J., Pirhonen, M., & Nissinen, A. I. (2019). A novel haplotype of ‘Candidatus Liberibacter solanacearum’ found in Apiaceae and Polygonaceae family plants. European Journal of Plant Pathology, 156(2), 413-423. doi:10.1007/s10658-019-01890-0

Mauck, K. E., Sun, P., Meduri, V. R., & Hansen, A. K. (2019). New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Scientific Reports, 9(1). doi:10.1038/s41598-019-45975-6

Teixeira, D. C., Eveillard, S., Sirand-Pugnet, P., Wulff, A., Saillard, C., Ayres, A. J., & Bove, J. M. (2008). The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: sequence comparisons, phylogeny and speciation. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(6), 1414-1421. doi:10.1099/ijs.0.65641-0

Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and Applied Microbiology, 38(4), 237-245. doi:10.1016/j.syapm.2015.03.007

Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., … Swings, J. (2005). Re-evaluating prokaryotic species. Nature Reviews Microbiology, 3(9), 733-739. doi:10.1038/nrmicro1236

Swisher Grimm, K. D., & Garczynski, S. F. (2019). Identification of a New Haplotype of ‘CandidatusLiberibacter solanacearum’ inSolanum tuberosum. Plant Disease, 103(3), 468-474. doi:10.1094/pdis-06-18-0937-re

Lin, H., Lou, B., Glynn, J. M., Doddapaneni, H., Civerolo, E. L., Chen, C., … Vahling, C. M. (2011). The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease. PLoS ONE, 6(4), e19135. doi:10.1371/journal.pone.0019135

Thompson, S. M., Johnson, C. P., Lu, A. Y., Frampton, R. A., Sullivan, K. L., Fiers, M. W. E. J., … Smith, G. R. (2015). Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species. Phytopathology®, 105(7), 863-871. doi:10.1094/phyto-12-14-0363-fi

Lin, H., Pietersen, G., Han, C., Read, D. A., Lou, B., Gupta, G., & Civerolo, E. L. (2015). Complete Genome Sequence of « Candidatus Liberibacter africanus,» a Bacterium Associated with Citrus Huanglongbing. Genome Announcements, 3(4). doi:10.1128/genomea.00733-15

Wulff, N. A., Zhang, S., Setubal, J. C., Almeida, N. F., Martins, E. C., Harakava, R., … Gabriel, D. W. (2014). The Complete Genome Sequence of ‘Candidatus Liberibacter americanus’, Associated with Citrus Huanglongbing. Molecular Plant-Microbe Interactions®, 27(2), 163-176. doi:10.1094/mpmi-09-13-0292-r

Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., … Gottwald, T. (2009). Complete Genome Sequence of Citrus Huanglongbing Bacterium, ‘CandidatusLiberibacter asiaticus’ Obtained Through Metagenomics. Molecular Plant-Microbe Interactions®, 22(8), 1011-1020. doi:10.1094/mpmi-22-8-1011

Katoh, H., Miyata, S., Inoue, H., & Iwanami, T. (2014). Unique Features of a Japanese ‘Candidatus Liberibacter asiaticus’ Strain Revealed by Whole Genome Sequencing. PLoS ONE, 9(9), e106109. doi:10.1371/journal.pone.0106109

Leonard, M. T., Fagen, J. R., Davis-Richardson, A. G., Davis, M. J., & Triplett, E. W. (2012). Complete genome sequence of Liberibacter crescens BT-1. Standards in Genomic Sciences, 7(2), 271-283. doi:10.4056/sigs.3326772

Teresani, G. R., Bertolini, E., Alfaro-Fernández, A., Martínez, C., Tanaka, F. A. O., Kitajima, E. W., … Font, M. I. (2014). Association of ‘Candidatus Liberibacter solanacearum’ with a Vegetative Disorder of Celery in Spain and Development of a Real-Time PCR Method for Its Detection. Phytopathology®, 104(8), 804-811. doi:10.1094/phyto-07-13-0182-r

Li, W., Hartung, J. S., & Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods, 66(1), 104-115. doi:10.1016/j.mimet.2005.10.018

Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., De la Rosa-Lozano, G., & Sanchez, A. (2009). First Report of ‘Candidatus Liberibacter psyllaurous’ in Potato Tubers with Zebra Chip Disease in Mexico. Plant Disease, 93(5), 552-552. doi:10.1094/pdis-93-5-0552a

Phillips, J. L., & Gnanakaran, S. (2014). A data-driven approach to modeling the tripartite structure of multidrug resistance efflux pumps. Proteins: Structure, Function, and Bioinformatics, 83(1), 46-65. doi:10.1002/prot.24632

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096

Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. (1993). Molecular Biology and Evolution. doi:10.1093/oxfordjournals.molbev.a040023

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. doi:10.1093/molbev/msx248

Liao, J., Wiedmann, M., & Kovac, J. (2017). Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference. Applied and Environmental Microbiology, 83(12). doi:10.1128/aem.00306-17

Tamura, K., Battistuzzi, F. U., Billing-Ross, P., Murillo, O., Filipski, A., & Kumar, S. (2012). Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences, 109(47), 19333-19338. doi:10.1073/pnas.1213199109

Tamura, K., Tao, Q., & Kumar, S. (2018). Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates. Molecular Biology and Evolution, 35(7), 1770-1782. doi:10.1093/molbev/msy044

López-Hermoso, C., de la Haba, R. R., Sánchez-Porro, C., Papke, R. T., & Ventosa, A. (2017). Assessment of MultiLocus Sequence Analysis As a Valuable Tool for the Classification of the Genus Salinivibrio. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01107

Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I., & Gentit, P. (2017). Genetic Characterization of ‘Candidatus Liberibacter solanacearum’ Haplotypes Associated with Apiaceous Crops in France. Plant Disease, 101(8), 1383-1390. doi:10.1094/pdis-11-16-1686-re

Fang, Y., Wang, Y., Liu, Z., Dai, H., Cai, H., Li, Z., … Wang, D. (2019). Multilocus Sequence Analysis, a Rapid and Accurate Tool for Taxonomic Classification, Evolutionary Relationship Determination, and Population Biology Studies of the Genus Shewanella. Applied and Environmental Microbiology, 85(11). doi:10.1128/aem.03126-18

Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). Toward a More Robust Assessment of IntraspeciesDiversity, Using Fewer GeneticMarkers. Applied and Environmental Microbiology, 72(11), 7286-7293. doi:10.1128/aem.01398-06

Ajene, I. J., Khamis, F., Ballo, S., Pietersen, G., van Asch, B., Seid, N., … Mohamed, S. (2020). Detection of Asian Citrus Psyllid (Hemiptera: Psyllidae) in Ethiopia: A New Haplotype and its Implication to the Proliferation of Huanglongbing. Journal of Economic Entomology, 113(4), 1640-1647. doi:10.1093/jee/toaa113

Thapa, S. P., De Francesco, A., Trinh, J., Gurung, F. B., Pang, Z., Vidalakis, G., … Coaker, G. (2020). Genome‐wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors. Molecular Plant Pathology, 21(5), 716-731. doi:10.1111/mpp.12925

Antolinez, C. A., Fereres, A., & Moreno, A. (2017). Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Scientific Reports, 7(1). doi:10.1038/srep45534

Antolínez, Moreno, Ontiveros, Pla, Plaza, Sanjuan, … Fereres. (2019). Seasonal Abundance of Psyllid Species on Carrots and Potato Crops in Spain. Insects, 10(9), 287. doi:10.3390/insects10090287

Wang, J., Haapalainen, M., Schott, T., Thompson, S. M., Smith, G. R., Nissinen, A. I., & Pirhonen, M. (2017). Genomic sequence of «Candidatus Liberibacter solanacearum» haplotype C and its comparison with haplotype A and B genomes. PLOS ONE, 12(2), e0171531. doi:10.1371/journal.pone.0171531

Katsir, L., Zhepu, R., Santos Garcia, D., Piasezky, A., Jiang, J., Sela, N., … Bahar, O. (2018). Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02933

Quintana-González de Chaves, M., Teresani, G. R., Hernández-Suárez, E., Bertolini, E., Moreno, A., Fereres, A., … Siverio, F. (2020). ‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae. Insects, 11(8), 514. doi:10.3390/insects11080514

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem