- -

Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Padilla, Ana es_ES
dc.contributor.author Redondo, Cristina es_ES
dc.contributor.author Asensio, Adrian es_ES
dc.contributor.author Garita-Cambronero, Jerson es_ES
dc.contributor.author Martinez, Carmen es_ES
dc.contributor.author Perez-Padilla, Verónica es_ES
dc.contributor.author Marquinez, Raquel es_ES
dc.contributor.author Collar, Jesus es_ES
dc.contributor.author Garcia-Mendez, Eva es_ES
dc.contributor.author Alfaro Fernández, Ana Olvido es_ES
dc.contributor.author Asensio-S-Manzanera, Carmen es_ES
dc.contributor.author Palomo, José Luis es_ES
dc.contributor.author Siverio, Felipe es_ES
dc.contributor.author De Leon, Leandro es_ES
dc.contributor.author Cubero, Jaime es_ES
dc.date.accessioned 2021-09-10T03:30:50Z
dc.date.available 2021-09-10T03:30:50Z
dc.date.issued 2020-09-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171996
dc.description.abstract [EN] Liberibacteris a bacterial group causing different diseases and disorders in plants. Among liberibacters,CandidatusLiberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and Solanaceae families. CLso isolates are usually grouped in defined haplotypes according to single nucleotide polymorphisms in genes associated with ribosomal elements. In order to characterize more precisely isolates of CLso identified in potato in Spain, a Multilocus Sequence Analysis (MLSA) was applied. This methodology was validated by a complete analysis of ten housekeeping genes that showed an absence of positive selection and a nearly neutral mechanism for their evolution. Most of the analysis performed with single housekeeping genes, as well as MLSA, grouped together isolates of CLso detected in potato crops in Spain within the haplotype E, undistinguishable from those infecting carrots, parsnips or celery. Moreover, the information from these housekeeping genes was used to estimate the evolutionary divergence among the different CLso by using the concatenated sequences of the genes assayed. Data obtained on the divergence among CLso haplotypes support the hypothesis of evolutionary events connected with different hosts, in different geographic areas, and possibly associated with different vectors. Our results demonstrate the absence in Spain of CLso isolates molecularly classified as haplotypes A and B, traditionally considered causal agents of zebra chip in potato, as well as the uncertain possibility of the present haplotype to produce major disease outbreaks in potato that may depend on many factors that should be further evaluated in future works es_ES
dc.description.sponsorship This research was funded by Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), grant numbers AT2016-007 and RTA2014-00008-C04-03-E, co-financed by FEDER. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Microorganisms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Liberibacter es_ES
dc.subject Zebra chip es_ES
dc.subject MLSA es_ES
dc.subject Potato es_ES
dc.subject Carrot es_ES
dc.subject Parsnip es_ES
dc.subject Celery es_ES
dc.subject Citrus es_ES
dc.subject HLB es_ES
dc.title Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/microorganisms8091446 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//AT2016-007/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//E-RTA2014-00010-C02-02/ES/Epidemiología del STV y su implicación en el "síndrome del falso PepMV"/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Ruiz-Padilla, A.; Redondo, C.; Asensio, A.; Garita-Cambronero, J.; Martinez, C.; Perez-Padilla, V.; Marquinez, R.... (2020). Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain. Microorganisms. 8(9):1-19. https://doi.org/10.3390/microorganisms8091446 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/microorganisms8091446 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2076-2607 es_ES
dc.identifier.pmid 32967215 es_ES
dc.identifier.pmcid PMC7565762 es_ES
dc.relation.pasarela S\432618 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder INSTITUTO NACIONAL DE INV. Y TECNOL. AGRARIA Y ALIMENTARIA es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Haapalainen, M. (2014). Biology and epidemics ofCandidatusLiberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165(2), 172-198. doi:10.1111/aab.12149 es_ES
dc.description.references Raddadi, N., Gonella, E., Camerota, C., Pizzinat, A., Tedeschi, R., Crotti, E., … Alma, A. (2010). ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology, 13(2), 414-426. doi:10.1111/j.1462-2920.2010.02347.x es_ES
dc.description.references Wang, N., Pierson, E. A., Setubal, J. C., Xu, J., Levy, J. G., Zhang, Y., … Martins, J. (2017). The Candidatus Liberibacter–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. Annual Review of Phytopathology, 55(1), 451-482. doi:10.1146/annurev-phyto-080516-035513 es_ES
dc.description.references Morris, J., Shiller, J., Mann, R., Smith, G., Yen, A., & Rodoni, B. (2017). Novel ‘Candidatus Liberibacter’ species identified in the Australian eggplant psyllid, Acizzia solanicola. Microbial Biotechnology, 10(4), 833-844. doi:10.1111/1751-7915.12707 es_ES
dc.description.references Alfaro-Fernández, A., Hernández-Llopis, D., & Font, M. I. (2017). Haplotypes of ‘Candidatus Liberibacter solanacearum’ identified in Umbeliferous crops in Spain. European Journal of Plant Pathology, 149(1), 127-131. doi:10.1007/s10658-017-1172-2 es_ES
dc.description.references Haapalainen, M., Wang, J., Latvala, S., Lehtonen, M. T., Pirhonen, M., & Nissinen, A. I. (2018). Genetic Variation of ‘Candidatus Liberibacter solanacearum’ Haplotype C and Identification of a Novel Haplotype from Trioza urticae and Stinging Nettle. Phytopathology®, 108(8), 925-934. doi:10.1094/phyto-12-17-0410-r es_ES
dc.description.references Haapalainen, M., Latvala, S., Wickström, A., Wang, J., Pirhonen, M., & Nissinen, A. I. (2019). A novel haplotype of ‘Candidatus Liberibacter solanacearum’ found in Apiaceae and Polygonaceae family plants. European Journal of Plant Pathology, 156(2), 413-423. doi:10.1007/s10658-019-01890-0 es_ES
dc.description.references Mauck, K. E., Sun, P., Meduri, V. R., & Hansen, A. K. (2019). New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Scientific Reports, 9(1). doi:10.1038/s41598-019-45975-6 es_ES
dc.description.references Teixeira, D. C., Eveillard, S., Sirand-Pugnet, P., Wulff, A., Saillard, C., Ayres, A. J., & Bove, J. M. (2008). The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: sequence comparisons, phylogeny and speciation. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(6), 1414-1421. doi:10.1099/ijs.0.65641-0 es_ES
dc.description.references Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and Applied Microbiology, 38(4), 237-245. doi:10.1016/j.syapm.2015.03.007 es_ES
dc.description.references Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., … Swings, J. (2005). Re-evaluating prokaryotic species. Nature Reviews Microbiology, 3(9), 733-739. doi:10.1038/nrmicro1236 es_ES
dc.description.references Swisher Grimm, K. D., & Garczynski, S. F. (2019). Identification of a New Haplotype of ‘CandidatusLiberibacter solanacearum’ inSolanum tuberosum. Plant Disease, 103(3), 468-474. doi:10.1094/pdis-06-18-0937-re es_ES
dc.description.references Lin, H., Lou, B., Glynn, J. M., Doddapaneni, H., Civerolo, E. L., Chen, C., … Vahling, C. M. (2011). The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease. PLoS ONE, 6(4), e19135. doi:10.1371/journal.pone.0019135 es_ES
dc.description.references Thompson, S. M., Johnson, C. P., Lu, A. Y., Frampton, R. A., Sullivan, K. L., Fiers, M. W. E. J., … Smith, G. R. (2015). Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species. Phytopathology®, 105(7), 863-871. doi:10.1094/phyto-12-14-0363-fi es_ES
dc.description.references Lin, H., Pietersen, G., Han, C., Read, D. A., Lou, B., Gupta, G., & Civerolo, E. L. (2015). Complete Genome Sequence of « Candidatus Liberibacter africanus,» a Bacterium Associated with Citrus Huanglongbing. Genome Announcements, 3(4). doi:10.1128/genomea.00733-15 es_ES
dc.description.references Wulff, N. A., Zhang, S., Setubal, J. C., Almeida, N. F., Martins, E. C., Harakava, R., … Gabriel, D. W. (2014). The Complete Genome Sequence of ‘Candidatus Liberibacter americanus’, Associated with Citrus Huanglongbing. Molecular Plant-Microbe Interactions®, 27(2), 163-176. doi:10.1094/mpmi-09-13-0292-r es_ES
dc.description.references Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., … Gottwald, T. (2009). Complete Genome Sequence of Citrus Huanglongbing Bacterium, ‘CandidatusLiberibacter asiaticus’ Obtained Through Metagenomics. Molecular Plant-Microbe Interactions®, 22(8), 1011-1020. doi:10.1094/mpmi-22-8-1011 es_ES
dc.description.references Katoh, H., Miyata, S., Inoue, H., & Iwanami, T. (2014). Unique Features of a Japanese ‘Candidatus Liberibacter asiaticus’ Strain Revealed by Whole Genome Sequencing. PLoS ONE, 9(9), e106109. doi:10.1371/journal.pone.0106109 es_ES
dc.description.references Leonard, M. T., Fagen, J. R., Davis-Richardson, A. G., Davis, M. J., & Triplett, E. W. (2012). Complete genome sequence of Liberibacter crescens BT-1. Standards in Genomic Sciences, 7(2), 271-283. doi:10.4056/sigs.3326772 es_ES
dc.description.references Teresani, G. R., Bertolini, E., Alfaro-Fernández, A., Martínez, C., Tanaka, F. A. O., Kitajima, E. W., … Font, M. I. (2014). Association of ‘Candidatus Liberibacter solanacearum’ with a Vegetative Disorder of Celery in Spain and Development of a Real-Time PCR Method for Its Detection. Phytopathology®, 104(8), 804-811. doi:10.1094/phyto-07-13-0182-r es_ES
dc.description.references Li, W., Hartung, J. S., & Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods, 66(1), 104-115. doi:10.1016/j.mimet.2005.10.018 es_ES
dc.description.references Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., De la Rosa-Lozano, G., & Sanchez, A. (2009). First Report of ‘Candidatus Liberibacter psyllaurous’ in Potato Tubers with Zebra Chip Disease in Mexico. Plant Disease, 93(5), 552-552. doi:10.1094/pdis-93-5-0552a es_ES
dc.description.references Phillips, J. L., & Gnanakaran, S. (2014). A data-driven approach to modeling the tripartite structure of multidrug resistance efflux pumps. Proteins: Structure, Function, and Bioinformatics, 83(1), 46-65. doi:10.1002/prot.24632 es_ES
dc.description.references Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096 es_ES
dc.description.references Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. (1993). Molecular Biology and Evolution. doi:10.1093/oxfordjournals.molbev.a040023 es_ES
dc.description.references Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. doi:10.1093/molbev/msx248 es_ES
dc.description.references Liao, J., Wiedmann, M., & Kovac, J. (2017). Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference. Applied and Environmental Microbiology, 83(12). doi:10.1128/aem.00306-17 es_ES
dc.description.references Tamura, K., Battistuzzi, F. U., Billing-Ross, P., Murillo, O., Filipski, A., & Kumar, S. (2012). Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences, 109(47), 19333-19338. doi:10.1073/pnas.1213199109 es_ES
dc.description.references Tamura, K., Tao, Q., & Kumar, S. (2018). Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates. Molecular Biology and Evolution, 35(7), 1770-1782. doi:10.1093/molbev/msy044 es_ES
dc.description.references López-Hermoso, C., de la Haba, R. R., Sánchez-Porro, C., Papke, R. T., & Ventosa, A. (2017). Assessment of MultiLocus Sequence Analysis As a Valuable Tool for the Classification of the Genus Salinivibrio. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01107 es_ES
dc.description.references Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I., & Gentit, P. (2017). Genetic Characterization of ‘Candidatus Liberibacter solanacearum’ Haplotypes Associated with Apiaceous Crops in France. Plant Disease, 101(8), 1383-1390. doi:10.1094/pdis-11-16-1686-re es_ES
dc.description.references Fang, Y., Wang, Y., Liu, Z., Dai, H., Cai, H., Li, Z., … Wang, D. (2019). Multilocus Sequence Analysis, a Rapid and Accurate Tool for Taxonomic Classification, Evolutionary Relationship Determination, and Population Biology Studies of the Genus Shewanella. Applied and Environmental Microbiology, 85(11). doi:10.1128/aem.03126-18 es_ES
dc.description.references Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). Toward a More Robust Assessment of IntraspeciesDiversity, Using Fewer GeneticMarkers. Applied and Environmental Microbiology, 72(11), 7286-7293. doi:10.1128/aem.01398-06 es_ES
dc.description.references Ajene, I. J., Khamis, F., Ballo, S., Pietersen, G., van Asch, B., Seid, N., … Mohamed, S. (2020). Detection of Asian Citrus Psyllid (Hemiptera: Psyllidae) in Ethiopia: A New Haplotype and its Implication to the Proliferation of Huanglongbing. Journal of Economic Entomology, 113(4), 1640-1647. doi:10.1093/jee/toaa113 es_ES
dc.description.references Thapa, S. P., De Francesco, A., Trinh, J., Gurung, F. B., Pang, Z., Vidalakis, G., … Coaker, G. (2020). Genome‐wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors. Molecular Plant Pathology, 21(5), 716-731. doi:10.1111/mpp.12925 es_ES
dc.description.references Antolinez, C. A., Fereres, A., & Moreno, A. (2017). Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Scientific Reports, 7(1). doi:10.1038/srep45534 es_ES
dc.description.references Antolínez, Moreno, Ontiveros, Pla, Plaza, Sanjuan, … Fereres. (2019). Seasonal Abundance of Psyllid Species on Carrots and Potato Crops in Spain. Insects, 10(9), 287. doi:10.3390/insects10090287 es_ES
dc.description.references Wang, J., Haapalainen, M., Schott, T., Thompson, S. M., Smith, G. R., Nissinen, A. I., & Pirhonen, M. (2017). Genomic sequence of «Candidatus Liberibacter solanacearum» haplotype C and its comparison with haplotype A and B genomes. PLOS ONE, 12(2), e0171531. doi:10.1371/journal.pone.0171531 es_ES
dc.description.references Katsir, L., Zhepu, R., Santos Garcia, D., Piasezky, A., Jiang, J., Sela, N., … Bahar, O. (2018). Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02933 es_ES
dc.description.references Quintana-González de Chaves, M., Teresani, G. R., Hernández-Suárez, E., Bertolini, E., Moreno, A., Fereres, A., … Siverio, F. (2020). ‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae. Insects, 11(8), 514. doi:10.3390/insects11080514 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem