Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchis, R. | es_ES |
dc.contributor.author | Duran-Heras, Alfonso | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.date.accessioned | 2021-09-10T03:30:52Z | |
dc.date.available | 2021-09-10T03:30:52Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171997 | |
dc.description.abstract | [EN] In today's volatile business arena, companies need to be resilient to deal with the unexpected. One of the main pillars of enterprise resilience is the capacity to anticipate, prevent and prepare in advance for disruptions. From this perspective, the paper proposes a mixed-integer linear programming (MILP) model for optimising preparedness capacity. Based on the proposed reference framework for enterprise resilience enhancement, the MILP optimises the activation of preventive actions to reduce proneness to disruption. To do so, the objective function minimizes the sum of the annual expected cost of disruptive events after implementing preventive actions and the annual cost of such actions. Moreover, the algorithm includes a constraint capping the investment in preventive actions and an attenuation formula to deal with the joint savings produced by the activation of two or more preventive actions on the same disruptive event. The management and business rationale for proposing the MILP approach is to keep it as simple and comprehensible as possible so that it does not require highly mathematically skilled personnel, thus allowing top managers at enterprises of any size to apply it effortlessly. Finally, a real pilot case study was performed to validate the mathematical formulation. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish State Research Agency (Agencia Estatal de Investigacion) under the Reference No. RTI2018-101344-B-I00-AR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Preparedness | es_ES |
dc.subject | Enterprise resilience | es_ES |
dc.subject | Optimisation | es_ES |
dc.subject | Mathematical programming | es_ES |
dc.subject | MILP | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8091596 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Sanchis, R.; Duran-Heras, A.; Poler, R. (2020). Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming. Mathematics. 8(9):1-29. https://doi.org/10.3390/math8091596 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8091596 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\424221 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Day, J. M. (2013). Fostering emergent resilience: the complex adaptive supply network of disaster relief. International Journal of Production Research, 52(7), 1970-1988. doi:10.1080/00207543.2013.787496 | es_ES |
dc.description.references | Kumar, S., & Anbanandam, R. (2019). An integrated Delphi – fuzzy logic approach for measuring supply chain resilience: an illustrative case from manufacturing industry. Measuring Business Excellence, 23(3), 350-375. doi:10.1108/mbe-01-2019-0001 | es_ES |
dc.description.references | Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. doi:10.1108/09574090910954873 | es_ES |
dc.description.references | Madni, A. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience Engineering. IEEE Systems Journal, 3(2), 181-191. doi:10.1109/jsyst.2009.2017397 | es_ES |
dc.description.references | Gilly, J.-P., Kechidi, M., & Talbot, D. (2014). Resilience of organisations and territories: The role of pivot firms. European Management Journal, 32(4), 596-602. doi:10.1016/j.emj.2013.09.004 | es_ES |
dc.description.references | Tomlin, B. (2006). On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks. Management Science, 52(5), 639-657. doi:10.1287/mnsc.1060.0515 | es_ES |
dc.description.references | Haimes, Y. Y., Crowther, K., & Horowitz, B. M. (2008). Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering, 11(4), 287-308. doi:10.1002/sys.20101 | es_ES |
dc.description.references | Sanchis, R., Canetta, L., & Poler, R. (2020). A Conceptual Reference Framework for Enterprise Resilience Enhancement. Sustainability, 12(4), 1464. doi:10.3390/su12041464 | es_ES |
dc.description.references | Lee, A. V., Vargo, J., & Seville, E. (2013). Developing a Tool to Measure and Compare Organizations’ Resilience. Natural Hazards Review, 14(1), 29-41. doi:10.1061/(asce)nh.1527-6996.0000075 | es_ES |
dc.description.references | Kim, Y., Chen, Y.-S., & Linderman, K. (2014). Supply network disruption and resilience: A network structural perspective. Journal of Operations Management, 33-34(1), 43-59. doi:10.1016/j.jom.2014.10.006 | es_ES |
dc.description.references | Soni, U., Jain, V., & Kumar, S. (2014). Measuring supply chain resilience using a deterministic modeling approach. Computers & Industrial Engineering, 74, 11-25. doi:10.1016/j.cie.2014.04.019 | es_ES |
dc.description.references | Munoz, A., & Dunbar, M. (2015). On the quantification of operational supply chain resilience. International Journal of Production Research, 53(22), 6736-6751. doi:10.1080/00207543.2015.1057296 | es_ES |
dc.description.references | Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. Journal of Business Logistics, 34(1), 46-76. doi:10.1111/jbl.12009 | es_ES |
dc.description.references | Manopiniwes, W., & Irohara, T. (2016). Stochastic optimisation model for integrated decisions on relief supply chains: preparedness for disaster response. International Journal of Production Research, 55(4), 979-996. doi:10.1080/00207543.2016.1211340 | es_ES |
dc.description.references | Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327 | es_ES |
dc.description.references | Namdar, J., Li, X., Sawhney, R., & Pradhan, N. (2017). Supply chain resilience for single and multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56(6), 2339-2360. doi:10.1080/00207543.2017.1370149 | es_ES |
dc.description.references | Wang, X., Herty, M., & Zhao, L. (2015). Contingent rerouting for enhancing supply chain resilience from supplier behavior perspective. International Transactions in Operational Research, 23(4), 775-796. doi:10.1111/itor.12151 | es_ES |
dc.description.references | Aleksić, A., Stefanović, M., Arsovski, S., & Tadić, D. (2013). An assessment of organizational resilience potential in SMEs of the process industry, a fuzzy approach. Journal of Loss Prevention in the Process Industries, 26(6), 1238-1245. doi:10.1016/j.jlp.2013.06.004 | es_ES |
dc.description.references | Tan, R. R., Aviso, K. B., Cayamanda, C. D., Chiu, A. S. F., Promentilla, M. A. B., Ubando, A. T., & Yu, K. D. S. (2016). A fuzzy linear programming enterprise input–output model for optimal crisis operations in industrial complexes. International Journal of Production Economics, 181, 410-418. doi:10.1016/j.ijpe.2015.10.012 | es_ES |
dc.description.references | Tadić, D., Aleksić, A., Stefanović, M., & Arsovski, S. (2014). Evaluation and Ranking of Organizational Resilience Factors by Using a Two-Step Fuzzy AHP and Fuzzy TOPSIS. Mathematical Problems in Engineering, 2014, 1-13. doi:10.1155/2014/418085 | es_ES |
dc.description.references | Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: definition, review and theoretical foundations for further study. International Journal of Production Research, 53(18), 5592-5623. doi:10.1080/00207543.2015.1037934 | es_ES |
dc.description.references | Shirali, G. A., Shekari, M., & Angali, K. A. (2016). Quantitative assessment of resilience safety culture using principal components analysis and numerical taxonomy: A case study in a petrochemical plant. Journal of Loss Prevention in the Process Industries, 40, 277-284. doi:10.1016/j.jlp.2016.01.007 | es_ES |
dc.description.references | Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488. doi:10.1016/j.ijpe.2005.12.006 | es_ES |
dc.description.references | Sanchis, R., & Poler, R. (2019). Origins of Disruptions Sources Framework to Support the Enterprise Resilience Analysis. IFAC-PapersOnLine, 52(13), 2062-2067. doi:10.1016/j.ifacol.2019.11.509 | es_ES |
dc.description.references | Sanchis, R., & Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. IFAC Proceedings Volumes, 46(9), 700-705. doi:10.3182/20130619-3-ru-3018.00600 | es_ES |
dc.description.references | Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. doi:10.1016/s0959-3780(03)00054-2 | es_ES |
dc.description.references | Sandanam, A., Diedrich, A., Gurney, G., & Richardson, T. (2018). Perceptions of Cyclone Preparedness: Assessing the Role of Individual Adaptive Capacity and Social Capital in the Wet Tropics, Australia. Sustainability, 10(4), 1165. doi:10.3390/su10041165 | es_ES |
dc.description.references | Tarafdar, M., & Qrunfleh, S. (2016). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925-938. doi:10.1080/00207543.2016.1203079 | es_ES |
dc.description.references | Svensson, G. (2002). A conceptual framework of vulnerability in firms’ inbound and outbound logistics flows. International Journal of Physical Distribution & Logistics Management, 32(2), 110-134. doi:10.1108/09600030210421723 | es_ES |
dc.description.references | Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). ENSURING SUPPLY CHAIN RESILIENCE: DEVELOPMENT OF A CONCEPTUAL FRAMEWORK. Journal of Business Logistics, 31(1), 1-21. doi:10.1002/j.2158-1592.2010.tb00125.x | es_ES |
dc.description.references | BDO Technology Risk Factor Report https://www.bdo.com/getattachment/d10c417f-beb7-4bb9-8835-2b2ec727ce2b/attachment.aspx?2017-Technology-Riskfactor-ReportBrochure_WEB.pdf | es_ES |
dc.description.references | Supply Chain Resilience Report http://www.bcifiles.com/bci-supply-chain-resilience-2015.pdf | es_ES |
dc.description.references | Lichtenstein, S., & Newman, J. R. (1967). Empirical scaling of common verbal phrases associated with numerical probabilities. Psychonomic Science, 9(10), 563-564. doi:10.3758/bf03327890 | es_ES |
dc.description.references | Hamm, R. M. (1991). Selection of verbal probabilities: A solution for some problems of verbal probability expression. Organizational Behavior and Human Decision Processes, 48(2), 193-223. doi:10.1016/0749-5978(91)90012-i | es_ES |
dc.description.references | Dickson, T. J. (2002). Calculating Risks: Fine’s Mathematical Formula 30 Years Later. Journal of Outdoor and Environmental Education, 6(1), 31-39. doi:10.1007/bf03400742 | es_ES |
dc.description.references | Patterson, F. D., & Neailey, K. (2002). A Risk Register Database System to aid the management of project risk. International Journal of Project Management, 20(5), 365-374. doi:10.1016/s0263-7863(01)00040-0 | es_ES |
dc.description.references | Chou, T.-C., & Talalay, P. (1983). Analysis of combined drug effects: a new look at a very old problem. Trends in Pharmacological Sciences, 4, 450-454. doi:10.1016/0165-6147(83)90490-x | es_ES |
dc.description.references | Chou, T.-C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27-55. doi:10.1016/0065-2571(84)90007-4 | es_ES |
dc.description.references | Belen’kii, M. S., & Schinazi, R. F. (1994). Multiple drug effect analysis with confidence interval. Antiviral Research, 25(1), 1-11. doi:10.1016/0166-3542(94)90089-2 | es_ES |
dc.description.references | Glossary of Terms and Symbols Used in Pharmacology. Pharmacology and Experimental Therapeutics Department at Boston University School of Medicine http://www.bumc.bu.edu/busm-pm/academics/resources/glossary/ | es_ES |
dc.description.references | Sanchis, R., & Poler, R. (2019). Mitigation proposal for the enhancement of enterprise resilience against supply disruptions. IFAC-PapersOnLine, 52(13), 2833-2838. doi:10.1016/j.ifacol.2019.11.638 | es_ES |
dc.description.references | Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A Modeling Language for Mathematical Optimization. SIAM Review, 59(2), 295-320. doi:10.1137/15m1020575 | es_ES |
dc.description.references | Jump https://jumdev/JuMjl/dev | es_ES |
dc.description.references | Forrest, J., & Lougee-Heimer, R. (2005). CBC User Guide. Emerging Theory, Methods, and Applications, 257-277. doi:10.1287/educ.1053.0020 | es_ES |
dc.description.references | Agencia Estatal de Meteorología. Las Gotas Frías/DANAs: Ideas y Conceptos Básicos https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/dana_ext.pdf | es_ES |
dc.description.references | Driessen, P., Hegger, D., Kundzewicz, Z., van Rijswick, H., Crabbé, A., Larrue, C., … Wiering, M. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10(11), 1595. doi:10.3390/w10111595 | es_ES |