- -

Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming

Mostrar el registro completo del ítem

Sanchis, R.; Duran-Heras, A.; Poler, R. (2020). Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming. Mathematics. 8(9):1-29. https://doi.org/10.3390/math8091596

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171997

Ficheros en el ítem

Metadatos del ítem

Título: Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming
Autor: Sanchis, R. Duran-Heras, Alfonso Poler, R.
Entidad UPV: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
[EN] In today's volatile business arena, companies need to be resilient to deal with the unexpected. One of the main pillars of enterprise resilience is the capacity to anticipate, prevent and prepare in advance for ...[+]
Palabras clave: Preparedness , Enterprise resilience , Optimisation , Mathematical programming , MILP
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8091596
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8091596
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/
Agradecimientos:
This work was supported by the Spanish State Research Agency (Agencia Estatal de Investigacion) under the Reference No. RTI2018-101344-B-I00-AR.
Tipo: Artículo

References

Day, J. M. (2013). Fostering emergent resilience: the complex adaptive supply network of disaster relief. International Journal of Production Research, 52(7), 1970-1988. doi:10.1080/00207543.2013.787496

Kumar, S., & Anbanandam, R. (2019). An integrated Delphi – fuzzy logic approach for measuring supply chain resilience: an illustrative case from manufacturing industry. Measuring Business Excellence, 23(3), 350-375. doi:10.1108/mbe-01-2019-0001

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. doi:10.1108/09574090910954873 [+]
Day, J. M. (2013). Fostering emergent resilience: the complex adaptive supply network of disaster relief. International Journal of Production Research, 52(7), 1970-1988. doi:10.1080/00207543.2013.787496

Kumar, S., & Anbanandam, R. (2019). An integrated Delphi – fuzzy logic approach for measuring supply chain resilience: an illustrative case from manufacturing industry. Measuring Business Excellence, 23(3), 350-375. doi:10.1108/mbe-01-2019-0001

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. doi:10.1108/09574090910954873

Madni, A. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience Engineering. IEEE Systems Journal, 3(2), 181-191. doi:10.1109/jsyst.2009.2017397

Gilly, J.-P., Kechidi, M., & Talbot, D. (2014). Resilience of organisations and territories: The role of pivot firms. European Management Journal, 32(4), 596-602. doi:10.1016/j.emj.2013.09.004

Tomlin, B. (2006). On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks. Management Science, 52(5), 639-657. doi:10.1287/mnsc.1060.0515

Haimes, Y. Y., Crowther, K., & Horowitz, B. M. (2008). Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering, 11(4), 287-308. doi:10.1002/sys.20101

Sanchis, R., Canetta, L., & Poler, R. (2020). A Conceptual Reference Framework for Enterprise Resilience Enhancement. Sustainability, 12(4), 1464. doi:10.3390/su12041464

Lee, A. V., Vargo, J., & Seville, E. (2013). Developing a Tool to Measure and Compare Organizations’ Resilience. Natural Hazards Review, 14(1), 29-41. doi:10.1061/(asce)nh.1527-6996.0000075

Kim, Y., Chen, Y.-S., & Linderman, K. (2014). Supply network disruption and resilience: A network structural perspective. Journal of Operations Management, 33-34(1), 43-59. doi:10.1016/j.jom.2014.10.006

Soni, U., Jain, V., & Kumar, S. (2014). Measuring supply chain resilience using a deterministic modeling approach. Computers & Industrial Engineering, 74, 11-25. doi:10.1016/j.cie.2014.04.019

Munoz, A., & Dunbar, M. (2015). On the quantification of operational supply chain resilience. International Journal of Production Research, 53(22), 6736-6751. doi:10.1080/00207543.2015.1057296

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. Journal of Business Logistics, 34(1), 46-76. doi:10.1111/jbl.12009

Manopiniwes, W., & Irohara, T. (2016). Stochastic optimisation model for integrated decisions on relief supply chains: preparedness for disaster response. International Journal of Production Research, 55(4), 979-996. doi:10.1080/00207543.2016.1211340

Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327

Namdar, J., Li, X., Sawhney, R., & Pradhan, N. (2017). Supply chain resilience for single and multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56(6), 2339-2360. doi:10.1080/00207543.2017.1370149

Wang, X., Herty, M., & Zhao, L. (2015). Contingent rerouting for enhancing supply chain resilience from supplier behavior perspective. International Transactions in Operational Research, 23(4), 775-796. doi:10.1111/itor.12151

Aleksić, A., Stefanović, M., Arsovski, S., & Tadić, D. (2013). An assessment of organizational resilience potential in SMEs of the process industry, a fuzzy approach. Journal of Loss Prevention in the Process Industries, 26(6), 1238-1245. doi:10.1016/j.jlp.2013.06.004

Tan, R. R., Aviso, K. B., Cayamanda, C. D., Chiu, A. S. F., Promentilla, M. A. B., Ubando, A. T., & Yu, K. D. S. (2016). A fuzzy linear programming enterprise input–output model for optimal crisis operations in industrial complexes. International Journal of Production Economics, 181, 410-418. doi:10.1016/j.ijpe.2015.10.012

Tadić, D., Aleksić, A., Stefanović, M., & Arsovski, S. (2014). Evaluation and Ranking of Organizational Resilience Factors by Using a Two-Step Fuzzy AHP and Fuzzy TOPSIS. Mathematical Problems in Engineering, 2014, 1-13. doi:10.1155/2014/418085

Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: definition, review and theoretical foundations for further study. International Journal of Production Research, 53(18), 5592-5623. doi:10.1080/00207543.2015.1037934

Shirali, G. A., Shekari, M., & Angali, K. A. (2016). Quantitative assessment of resilience safety culture using principal components analysis and numerical taxonomy: A case study in a petrochemical plant. Journal of Loss Prevention in the Process Industries, 40, 277-284. doi:10.1016/j.jlp.2016.01.007

Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488. doi:10.1016/j.ijpe.2005.12.006

Sanchis, R., & Poler, R. (2019). Origins of Disruptions Sources Framework to Support the Enterprise Resilience Analysis. IFAC-PapersOnLine, 52(13), 2062-2067. doi:10.1016/j.ifacol.2019.11.509

Sanchis, R., & Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. IFAC Proceedings Volumes, 46(9), 700-705. doi:10.3182/20130619-3-ru-3018.00600

Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. doi:10.1016/s0959-3780(03)00054-2

Sandanam, A., Diedrich, A., Gurney, G., & Richardson, T. (2018). Perceptions of Cyclone Preparedness: Assessing the Role of Individual Adaptive Capacity and Social Capital in the Wet Tropics, Australia. Sustainability, 10(4), 1165. doi:10.3390/su10041165

Tarafdar, M., & Qrunfleh, S. (2016). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925-938. doi:10.1080/00207543.2016.1203079

Svensson, G. (2002). A conceptual framework of vulnerability in firms’ inbound and outbound logistics flows. International Journal of Physical Distribution & Logistics Management, 32(2), 110-134. doi:10.1108/09600030210421723

Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). ENSURING SUPPLY CHAIN RESILIENCE: DEVELOPMENT OF A CONCEPTUAL FRAMEWORK. Journal of Business Logistics, 31(1), 1-21. doi:10.1002/j.2158-1592.2010.tb00125.x

BDO Technology Risk Factor Report https://www.bdo.com/getattachment/d10c417f-beb7-4bb9-8835-2b2ec727ce2b/attachment.aspx?2017-Technology-Riskfactor-ReportBrochure_WEB.pdf

Supply Chain Resilience Report http://www.bcifiles.com/bci-supply-chain-resilience-2015.pdf

Lichtenstein, S., & Newman, J. R. (1967). Empirical scaling of common verbal phrases associated with numerical probabilities. Psychonomic Science, 9(10), 563-564. doi:10.3758/bf03327890

Hamm, R. M. (1991). Selection of verbal probabilities: A solution for some problems of verbal probability expression. Organizational Behavior and Human Decision Processes, 48(2), 193-223. doi:10.1016/0749-5978(91)90012-i

Dickson, T. J. (2002). Calculating Risks: Fine’s Mathematical Formula 30 Years Later. Journal of Outdoor and Environmental Education, 6(1), 31-39. doi:10.1007/bf03400742

Patterson, F. D., & Neailey, K. (2002). A Risk Register Database System to aid the management of project risk. International Journal of Project Management, 20(5), 365-374. doi:10.1016/s0263-7863(01)00040-0

Chou, T.-C., & Talalay, P. (1983). Analysis of combined drug effects: a new look at a very old problem. Trends in Pharmacological Sciences, 4, 450-454. doi:10.1016/0165-6147(83)90490-x

Chou, T.-C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27-55. doi:10.1016/0065-2571(84)90007-4

Belen’kii, M. S., & Schinazi, R. F. (1994). Multiple drug effect analysis with confidence interval. Antiviral Research, 25(1), 1-11. doi:10.1016/0166-3542(94)90089-2

Glossary of Terms and Symbols Used in Pharmacology. Pharmacology and Experimental Therapeutics Department at Boston University School of Medicine http://www.bumc.bu.edu/busm-pm/academics/resources/glossary/

Sanchis, R., & Poler, R. (2019). Mitigation proposal for the enhancement of enterprise resilience against supply disruptions. IFAC-PapersOnLine, 52(13), 2833-2838. doi:10.1016/j.ifacol.2019.11.638

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A Modeling Language for Mathematical Optimization. SIAM Review, 59(2), 295-320. doi:10.1137/15m1020575

Jump https://jumdev/JuMjl/dev

Forrest, J., & Lougee-Heimer, R. (2005). CBC User Guide. Emerging Theory, Methods, and Applications, 257-277. doi:10.1287/educ.1053.0020

Agencia Estatal de Meteorología. Las Gotas Frías/DANAs: Ideas y Conceptos Básicos https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/dana_ext.pdf

Driessen, P., Hegger, D., Kundzewicz, Z., van Rijswick, H., Crabbé, A., Larrue, C., … Wiering, M. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10(11), 1595. doi:10.3390/w10111595

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem