Schein, O., & Denk, G. (1998). Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. Journal of Computational and Applied Mathematics, 100(1), 77-92. doi:10.1016/s0377-0427(98)00138-1
Winkler, R. (2004). Stochastic differential algebraic equations of index 1 and applications in circuit simulation. Journal of Computational and Applied Mathematics, 163(2), 435-463. doi:10.1016/j.cam.2003.12.017
CONG, N. D., & THE, N. T. (2012). LYAPUNOV SPECTRUM OF NONAUTONOMOUS LINEAR STOCHASTIC DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX-1. Stochastics and Dynamics, 12(04), 1250002. doi:10.1142/s0219493712500025
[+]
Schein, O., & Denk, G. (1998). Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. Journal of Computational and Applied Mathematics, 100(1), 77-92. doi:10.1016/s0377-0427(98)00138-1
Winkler, R. (2004). Stochastic differential algebraic equations of index 1 and applications in circuit simulation. Journal of Computational and Applied Mathematics, 163(2), 435-463. doi:10.1016/j.cam.2003.12.017
CONG, N. D., & THE, N. T. (2012). LYAPUNOV SPECTRUM OF NONAUTONOMOUS LINEAR STOCHASTIC DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX-1. Stochastics and Dynamics, 12(04), 1250002. doi:10.1142/s0219493712500025
Küpper, D., Kværnø, A., & Rößler, A. (2011). A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise. BIT Numerical Mathematics, 52(2), 437-455. doi:10.1007/s10543-011-0354-0
Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica, 15(1), 9-20. doi:10.1007/bf02128236
Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica, 15(1), 21-30. doi:10.1007/bf02128237
Dieci, L., & Van Vleck, E. S. (2002). Lyapunov Spectral Intervals: Theory and Computation. SIAM Journal on Numerical Analysis, 40(2), 516-542. doi:10.1137/s0036142901392304
Dieci, L., & Van Vleck, E. S. (2006). Lyapunov and Sacker–Sell Spectral Intervals. Journal of Dynamics and Differential Equations, 19(2), 265-293. doi:10.1007/s10884-006-9030-5
Linh, V. H., & Mehrmann, V. (2009). Lyapunov, Bohl and Sacker-Sell Spectral Intervals for Differential-Algebraic Equations. Journal of Dynamics and Differential Equations, 21(1), 153-194. doi:10.1007/s10884-009-9128-7
Linh, V. H., Mehrmann, V., & Van Vleck, E. S. (2010). QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Advances in Computational Mathematics, 35(2-4), 281-322. doi:10.1007/s10444-010-9156-1
Dieci, L., Russell, R. D., & Van Vleck, E. S. (1997). On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems. SIAM Journal on Numerical Analysis, 34(1), 402-423. doi:10.1137/s0036142993247311
Talay, D. (1990). Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics and Stochastic Reports, 29(1), 13-36. doi:10.1080/17442509008833606
Dieci, L., Russell, R. D., & Van Vleck, E. S. (1994). Unitary Integrators and Applications to Continuous Orthonormalization Techniques. SIAM Journal on Numerical Analysis, 31(1), 261-281. doi:10.1137/0731014
YU. RYAGIN, M., & RYASHKO, L. B. (2004). THE ANALYSIS OF THE STOCHASTICALLY FORCED PERIODIC ATTRACTORS FOR CHUA’S CIRCUIT. International Journal of Bifurcation and Chaos, 14(11), 3981-3987. doi:10.1142/s0218127404011600
Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. (2004). IEEE Transactions on Power Systems, 19(3), 1387-1401. doi:10.1109/tpwrs.2004.825981
Verdejo, H., Vargas, L., & Kliemann, W. (2012). Stability of linear stochastic systems via Lyapunov exponents and applications to power systems. Applied Mathematics and Computation, 218(22), 11021-11032. doi:10.1016/j.amc.2012.04.063
Verdejo, H., Escudero, W., Kliemann, W., Awerkin, A., Becker, C., & Vargas, L. (2016). Impact of wind power generation on a large scale power system using stochastic linear stability. Applied Mathematical Modelling, 40(17-18), 7977-7987. doi:10.1016/j.apm.2016.04.020
Wadduwage, D. P., Wu, C. Q., & Annakkage, U. D. (2013). Power system transient stability analysis via the concept of Lyapunov Exponents. Electric Power Systems Research, 104, 183-192. doi:10.1016/j.epsr.2013.06.011
Milano, F., & Zarate-Minano, R. (2013). A Systematic Method to Model Power Systems as Stochastic Differential Algebraic Equations. IEEE Transactions on Power Systems, 28(4), 4537-4544. doi:10.1109/tpwrs.2013.2266441
Geurts, B. J., Holm, D. D., & Luesink, E. (2019). Lyapunov Exponents of Two Stochastic Lorenz 63 Systems. Journal of Statistical Physics, 179(5-6), 1343-1365. doi:10.1007/s10955-019-02457-3
[-]