- -

Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Zumba, Andrés es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Mehrmann, Volker es_ES
dc.date.accessioned 2021-09-10T03:30:57Z
dc.date.available 2021-09-10T03:30:57Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172001
dc.description.abstract [EN] In this paper, we discuss stochastic differential-algebraic equations (SDAEs) and the asymptotic stability assessment for such systems via Lyapunov exponents (LEs). We focus on index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Via ergodic theory, it is then feasible to analyze the LEs via the random dynamical system generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and to use it in the computation of the LEs. Important computational features of both methods are illustrated via numerical tests. Finally, the methods are applied to two applications from power systems engineering, including the single-machine infinite-bus (SMIB) power system model. es_ES
dc.description.sponsorship A.G.-Z. was supported by Secretaria Nacional de Ciencia y Tecnologia SENESCYT (Ecuador), through the scholarship "Becas de Fomento al Talento Humano", and Deutsche Forschungsgemeinschaft through Collaborative Research Centre Transregio. SFB TRR 154. P.F.-d.-C. was partially supported by grant no. RTI2018-102256-B-I00 (Spain). J.-C.C. acknowledges the support by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P. V.M. was partially supported by Deutsche Forschungsgemeinschaft through the Excellence Cluster Math+ in Berlin, and Priority Program 1984 "Hybride und multimodale Energiesysteme: Systemtheoretische Methoden fur die Transformation und den Betrieb komplexer Netze". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Stochastic differential-algebraic equations es_ES
dc.subject Lyapunov exponent es_ES
dc.subject Power system stability es_ES
dc.subject Spectral analysis es_ES
dc.subject Stochastic systems es_ES
dc.subject Numerical methods es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8091393 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SFB TRR 154/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation González-Zumba, A.; Fernández De Córdoba, P.; Cortés, J.; Mehrmann, V. (2020). Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems. Mathematics. 8(9):1-26. https://doi.org/10.3390/math8091393 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8091393 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\417210 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Schein, O., & Denk, G. (1998). Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. Journal of Computational and Applied Mathematics, 100(1), 77-92. doi:10.1016/s0377-0427(98)00138-1 es_ES
dc.description.references Winkler, R. (2004). Stochastic differential algebraic equations of index 1 and applications in circuit simulation. Journal of Computational and Applied Mathematics, 163(2), 435-463. doi:10.1016/j.cam.2003.12.017 es_ES
dc.description.references CONG, N. D., & THE, N. T. (2012). LYAPUNOV SPECTRUM OF NONAUTONOMOUS LINEAR STOCHASTIC DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX-1. Stochastics and Dynamics, 12(04), 1250002. doi:10.1142/s0219493712500025 es_ES
dc.description.references Küpper, D., Kværnø, A., & Rößler, A. (2011). A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise. BIT Numerical Mathematics, 52(2), 437-455. doi:10.1007/s10543-011-0354-0 es_ES
dc.description.references Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica, 15(1), 9-20. doi:10.1007/bf02128236 es_ES
dc.description.references Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica, 15(1), 21-30. doi:10.1007/bf02128237 es_ES
dc.description.references Dieci, L., & Van Vleck, E. S. (2002). Lyapunov Spectral Intervals: Theory and Computation. SIAM Journal on Numerical Analysis, 40(2), 516-542. doi:10.1137/s0036142901392304 es_ES
dc.description.references Dieci, L., & Van Vleck, E. S. (2006). Lyapunov and Sacker–Sell Spectral Intervals. Journal of Dynamics and Differential Equations, 19(2), 265-293. doi:10.1007/s10884-006-9030-5 es_ES
dc.description.references Linh, V. H., & Mehrmann, V. (2009). Lyapunov, Bohl and Sacker-Sell Spectral Intervals for Differential-Algebraic Equations. Journal of Dynamics and Differential Equations, 21(1), 153-194. doi:10.1007/s10884-009-9128-7 es_ES
dc.description.references Linh, V. H., Mehrmann, V., & Van Vleck, E. S. (2010). QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Advances in Computational Mathematics, 35(2-4), 281-322. doi:10.1007/s10444-010-9156-1 es_ES
dc.description.references Dieci, L., Russell, R. D., & Van Vleck, E. S. (1997). On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems. SIAM Journal on Numerical Analysis, 34(1), 402-423. doi:10.1137/s0036142993247311 es_ES
dc.description.references Talay, D. (1990). Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics and Stochastic Reports, 29(1), 13-36. doi:10.1080/17442509008833606 es_ES
dc.description.references Dieci, L., Russell, R. D., & Van Vleck, E. S. (1994). Unitary Integrators and Applications to Continuous Orthonormalization Techniques. SIAM Journal on Numerical Analysis, 31(1), 261-281. doi:10.1137/0731014 es_ES
dc.description.references YU. RYAGIN, M., & RYASHKO, L. B. (2004). THE ANALYSIS OF THE STOCHASTICALLY FORCED PERIODIC ATTRACTORS FOR CHUA’S CIRCUIT. International Journal of Bifurcation and Chaos, 14(11), 3981-3987. doi:10.1142/s0218127404011600 es_ES
dc.description.references Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. (2004). IEEE Transactions on Power Systems, 19(3), 1387-1401. doi:10.1109/tpwrs.2004.825981 es_ES
dc.description.references Verdejo, H., Vargas, L., & Kliemann, W. (2012). Stability of linear stochastic systems via Lyapunov exponents and applications to power systems. Applied Mathematics and Computation, 218(22), 11021-11032. doi:10.1016/j.amc.2012.04.063 es_ES
dc.description.references Verdejo, H., Escudero, W., Kliemann, W., Awerkin, A., Becker, C., & Vargas, L. (2016). Impact of wind power generation on a large scale power system using stochastic linear stability. Applied Mathematical Modelling, 40(17-18), 7977-7987. doi:10.1016/j.apm.2016.04.020 es_ES
dc.description.references Wadduwage, D. P., Wu, C. Q., & Annakkage, U. D. (2013). Power system transient stability analysis via the concept of Lyapunov Exponents. Electric Power Systems Research, 104, 183-192. doi:10.1016/j.epsr.2013.06.011 es_ES
dc.description.references Milano, F., & Zarate-Minano, R. (2013). A Systematic Method to Model Power Systems as Stochastic Differential Algebraic Equations. IEEE Transactions on Power Systems, 28(4), 4537-4544. doi:10.1109/tpwrs.2013.2266441 es_ES
dc.description.references Geurts, B. J., Holm, D. D., & Luesink, E. (2019). Lyapunov Exponents of Two Stochastic Lorenz 63 Systems. Journal of Statistical Physics, 179(5-6), 1343-1365. doi:10.1007/s10955-019-02457-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem