Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841
Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777
Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106
[+]
Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841
Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777
Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106
Kim, J.-O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8(3), 338-349. doi:10.1109/70.143352
Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931-946. doi:10.1002/rob.4620100704
Garrido, S., Moreno, L., Blanco, D., & Martín Monar, F. (2009). Robotic Motion Using Harmonic Functions and Finite Elements. Journal of Intelligent and Robotic Systems, 59(1), 57-73. doi:10.1007/s10846-009-9381-3
Bai, X., Yan, W., Cao, M., & Xue, D. (2019). Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles. IET Control Theory & Applications, 13(17), 2886-2893. doi:10.1049/iet-cta.2018.6125
Bai, X., Yan, W., Ge, S. S., & Cao, M. (2018). An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Information Sciences, 453, 227-238. doi:10.1016/j.ins.2018.04.044
Falcó, A., & Nouy, A. (2011). Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numerische Mathematik, 121(3), 503-530. doi:10.1007/s00211-011-0437-5
Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x
Falcó, A., Montés, N., Chinesta, F., Hilario, L., & Mora, M. C. (2018). On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. Journal of Computational and Applied Mathematics, 330, 1093-1107. doi:10.1016/j.cam.2017.08.007
Domenech, L., Falcó, A., García, V., & Sánchez, F. (2016). Towards a 2.5D geometric model in mold filling simulation. Journal of Computational and Applied Mathematics, 291, 183-196. doi:10.1016/j.cam.2015.02.043
Falcó, A., & Nouy, A. (2011). A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. Journal of Mathematical Analysis and Applications, 376(2), 469-480. doi:10.1016/j.jmaa.2010.12.003
Falcó, A., & Hackbusch, W. (2012). On Minimal Subspaces in Tensor Representations. Foundations of Computational Mathematics, 12(6), 765-803. doi:10.1007/s10208-012-9136-6
Canuto, C., & Urban, K. (2005). Adaptive Optimization of Convex Functionals in Banach Spaces. SIAM Journal on Numerical Analysis, 42(5), 2043-2075. doi:10.1137/s0036142903429730
Ammar, A., Chinesta, F., & Falcó, A. (2010). On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems. Archives of Computational Methods in Engineering, 17(4), 473-486. doi:10.1007/s11831-010-9048-z
[-]