- -

A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

Show full item record

Falcó, A.; Hilario, L.; Montés, N.; Mora, MC.; Nadal, E. (2020). A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics. 8(12):1-11. https://doi.org/10.3390/math8122245

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172002

Files in this item

Item Metadata

Title: A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition
Author: Falcó, Antonio Hilario, Lucía Montés, Nicolás Mora, Marta C. Nadal, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
Abstract:
[EN] A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: ...[+]
Subjects: Proper generalized decomposition , Motion planning , Artificial potential fields , Harmonic functions , Laplace equation , Dynamic environment
Copyrigths: Reconocimiento (by)
Source:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8122245
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/math8122245
Project ID:
GVA/GVA/2019/124
AEI/RTI2018-093521-B-C32
Thanks:
This research was funded by the GVA/2019/124 grant from Generalitat Valenciana and by the RTI2018-093521-B-C32 grant from the Ministerio de Ciencia, Innovacion y Universidades.
Type: Artículo

References

Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841

Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777

Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106 [+]
Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841

Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777

Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106

Kim, J.-O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8(3), 338-349. doi:10.1109/70.143352

Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931-946. doi:10.1002/rob.4620100704

Garrido, S., Moreno, L., Blanco, D., & Martín Monar, F. (2009). Robotic Motion Using Harmonic Functions and Finite Elements. Journal of Intelligent and Robotic Systems, 59(1), 57-73. doi:10.1007/s10846-009-9381-3

Bai, X., Yan, W., Cao, M., & Xue, D. (2019). Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles. IET Control Theory & Applications, 13(17), 2886-2893. doi:10.1049/iet-cta.2018.6125

Bai, X., Yan, W., Ge, S. S., & Cao, M. (2018). An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Information Sciences, 453, 227-238. doi:10.1016/j.ins.2018.04.044

Falcó, A., & Nouy, A. (2011). Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numerische Mathematik, 121(3), 503-530. doi:10.1007/s00211-011-0437-5

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x

Falcó, A., Montés, N., Chinesta, F., Hilario, L., & Mora, M. C. (2018). On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. Journal of Computational and Applied Mathematics, 330, 1093-1107. doi:10.1016/j.cam.2017.08.007

Domenech, L., Falcó, A., García, V., & Sánchez, F. (2016). Towards a 2.5D geometric model in mold filling simulation. Journal of Computational and Applied Mathematics, 291, 183-196. doi:10.1016/j.cam.2015.02.043

Falcó, A., & Nouy, A. (2011). A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. Journal of Mathematical Analysis and Applications, 376(2), 469-480. doi:10.1016/j.jmaa.2010.12.003

Falcó, A., & Hackbusch, W. (2012). On Minimal Subspaces in Tensor Representations. Foundations of Computational Mathematics, 12(6), 765-803. doi:10.1007/s10208-012-9136-6

Canuto, C., & Urban, K. (2005). Adaptive Optimization of Convex Functionals in Banach Spaces. SIAM Journal on Numerical Analysis, 42(5), 2043-2075. doi:10.1137/s0036142903429730

Ammar, A., Chinesta, F., & Falcó, A. (2010). On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems. Archives of Computational Methods in Engineering, 17(4), 473-486. doi:10.1007/s11831-010-9048-z

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record