Mostrar el registro sencillo del ítem
dc.contributor.author | Pedroche Sánchez, Francisco | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.date.accessioned | 2021-09-11T03:31:08Z | |
dc.date.available | 2021-09-11T03:31:08Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172139 | |
dc.description.abstract | [EN] Mathematical analysis of rankings is essential for a wide range of scientific, public, and industrial applications (e.g., group decision-making, organizational methods, R&D sponsorship, recommender systems, voter systems, sports competitions, grant proposals rankings, web searchers, Internet streaming-on-demand media providers, etc.). Recently, some methods for incomplete aggregate rankings (rankings in which not all the elements are ranked) with ties, based on the classic Kendall's tau coefficient, have been presented. We are interested in ordinal rankings (that is, we can order the elements to be the first, the second, etc.) allowing ties between the elements (e.g., two elements may be in the first position). We extend a previous coefficient for comparing a series of complete rankings with ties to two new coefficients for comparing a series of incomplete rankings with ties. We make use of the newest definitions of Kendall's tau extensions. We also offer a theoretical result to interpret these coefficients in terms of the type of interactions that the elements of two consecutive rankings may show (e.g., they preserve their positions, cross their positions, and they are tied in one ranking but untied in the other ranking, etc.). We give some small examples to illustrate all the newly presented parameters and coefficients. We also apply our coefficients to compare some series of Spotify charts, both Top 200 and Viral 50, showing the applicability and utility of the proposed measures. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Government, Ministerio de Economia y Competividad, grant number MTM2016-75963-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Incomplete rankings | es_ES |
dc.subject | Kendall's tau | es_ES |
dc.subject | Permutation graph | es_ES |
dc.subject | Competitive balance | es_ES |
dc.subject | Spotify | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8101828 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Pedroche Sánchez, F.; Conejero, JA. (2020). Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists. Mathematics. 8(10):1-30. https://doi.org/10.3390/math8101828 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8101828 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\422817 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Diaconis, P., & Graham, R. L. (1977). Spearman’s Footrule as a Measure of Disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2), 262-268. doi:10.1111/j.2517-6161.1977.tb01624.x | es_ES |
dc.description.references | Moreno-Centeno, E., & Escobedo, A. R. (2015). Axiomatic aggregation of incomplete rankings. IIE Transactions, 48(6), 475-488. doi:10.1080/0740817x.2015.1109737 | es_ES |
dc.description.references | Criado, R., García, E., Pedroche, F., & Romance, M. (2013). A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 043114. doi:10.1063/1.4826446 | es_ES |
dc.description.references | Fortune 500https://fortune.com/fortune500/ | es_ES |
dc.description.references | Academic Ranking of World Universities ARWU 2020http://www.shanghairanking.com/ARWU2020.html | es_ES |
dc.description.references | CWTS Leiden Ranking 2020https://www.leidenranking.com/ranking/2020/list | es_ES |
dc.description.references | The Hot 100https://www.billboard.com/charts/hot-100 | es_ES |
dc.description.references | Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., & Vee, E. (2006). Comparing Partial Rankings. SIAM Journal on Discrete Mathematics, 20(3), 628-648. doi:10.1137/05063088x | es_ES |
dc.description.references | Cook, W. D., Kress, M., & Seiford, L. M. (1986). An axiomatic approach to distance on partial orderings. RAIRO - Operations Research, 20(2), 115-122. doi:10.1051/ro/1986200201151 | es_ES |
dc.description.references | Yoo, Y., Escobedo, A. R., & Skolfield, J. K. (2020). A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings. European Journal of Operational Research, 285(3), 1025-1041. doi:10.1016/j.ejor.2020.02.027 | es_ES |
dc.description.references | Pedroche, F., Criado, R., García, E., Romance, M., & Sánchez, V. E. (2015). Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks and Heterogeneous Media, 10(1), 101-125. doi:10.3934/nhm.2015.10.101 | es_ES |
dc.description.references | Criado, R., García, E., Pedroche, F., & Romance, M. (2016). On graphs associated to sets of rankings. Journal of Computational and Applied Mathematics, 291, 497-508. doi:10.1016/j.cam.2015.03.009 | es_ES |
dc.description.references | KENDALL, M. G. (1938). A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1-2), 81-93. doi:10.1093/biomet/30.1-2.81 | es_ES |
dc.description.references | Kendall, M. G., & Smith, B. B. (1939). The Problem of $m$ Rankings. The Annals of Mathematical Statistics, 10(3), 275-287. doi:10.1214/aoms/1177732186 | es_ES |
dc.description.references | Bogart, K. P. (1973). Preference structures I: Distances between transitive preference relations†. The Journal of Mathematical Sociology, 3(1), 49-67. doi:10.1080/0022250x.1973.9989823 | es_ES |
dc.description.references | Bogart, K. P. (1975). Preference Structures. II: Distances Between Asymmetric Relations. SIAM Journal on Applied Mathematics, 29(2), 254-262. doi:10.1137/0129023 | es_ES |
dc.description.references | Cicirello, V. (2020). Kendall tau sequence distance: Extending Kendall tau from ranks to sequences. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23), 163925. doi:10.4108/eai.13-7-2018.163925 | es_ES |
dc.description.references | Armstrong, R. A. (2019). Should Pearson’s correlation coefficient be avoided? Ophthalmic and Physiological Optics, 39(5), 316-327. doi:10.1111/opo.12636 | es_ES |
dc.description.references | Redman, W. (2019). An O(n) method of calculating Kendall correlations of spike trains. PLOS ONE, 14(2), e0212190. doi:10.1371/journal.pone.0212190 | es_ES |
dc.description.references | Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics, 10(1). doi:10.1186/1471-2105-10-62 | es_ES |
dc.description.references | Pnueli, A., Lempel, A., & Even, S. (1971). Transitive Orientation of Graphs and Identification of Permutation Graphs. Canadian Journal of Mathematics, 23(1), 160-175. doi:10.4153/cjm-1971-016-5 | es_ES |
dc.description.references | Gervacio, S. V., Rapanut, T. A., & Ramos, P. C. F. (2013). Characterization and Construction of Permutation Graphs. Open Journal of Discrete Mathematics, 03(01), 33-38. doi:10.4236/ojdm.2013.31007 | es_ES |
dc.description.references | Golumbic, M. C., Rotem, D., & Urrutia, J. (1983). Comparability graphs and intersection graphs. Discrete Mathematics, 43(1), 37-46. doi:10.1016/0012-365x(83)90019-5 | es_ES |
dc.description.references | Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28. doi:10.1002/mcda.313 | es_ES |
dc.description.references | Spotify Reports Second Quarter 2020 Earningshttps://newsroom.spotify.com/2020-07-29/spotify-reports-second-quarter-2020-earnings | es_ES |
dc.description.references | Company infohttps://newsroom.spotify.com/company-info/ | es_ES |
dc.description.references | Bussines Wirehttps://www.businesswire.com/news/home/20200429005216/en/ | es_ES |
dc.description.references | Swanson, K. (2013). A Case Study on Spotify: Exploring Perceptions of the Music Streaming Service. Journal of the Music and Entertainment Industry Educators Association, 13(1), 207-230. doi:10.25101/13.10 | es_ES |
dc.description.references | Microsoft Retires Groove Music Service, Partners with Spotifyhttps://www.theverge.com/2017/10/2/16401898/microsoft-groove-music-pass-discontinued-spotify-partner | es_ES |
dc.description.references | Spotify Launches on PlayStation Music Todayhttps://blog.playstation.com/2015/03/30/spotify-launches-on-playstation-music-today/ | es_ES |
dc.description.references | You Can Now Share Music from Spotify to Facebook Storieshttps://techcrunch.com/2019/08/30/you-can-now-share-music-from-spotify-to-facebook-stories | es_ES |
dc.description.references | Mähler, R., & Vonderau, P. (2017). Studying Ad Targeting with Digital Methods: The Case of Spotify. Culture Unbound, 9(2), 212-221. doi:10.3384/cu.2000.1525.1792212 | es_ES |
dc.description.references | Analyzing Spotify Data. Exploring the Possibilities of User Data from a Scientific and Business Perspective. (Supervised by Sandjai Bhulai). Report from Vrije Universiteit Amsterdamhttps://www.math.vu.nl/~sbhulai/papers/paper-vandenhoven.pdf | es_ES |
dc.description.references | Greenberg, D. M., Kosinski, M., Stillwell, D. J., Monteiro, B. L., Levitin, D. J., & Rentfrow, P. J. (2016). The Song Is You. Social Psychological and Personality Science, 7(6), 597-605. doi:10.1177/1948550616641473 | es_ES |
dc.description.references | Spotify Charts Regionalhttps://spotifycharts.com/regional | es_ES |
dc.description.references | Spotify Charts Launch Globally, Showcase 50 Most Listened to and Most Viral Tracks Weeklyhttps://www.engadget.com/2013-05-21-spotify-charts-launch.html | es_ES |
dc.description.references | Spotify says its Viral-50 chart reaches the parts other charts don’thttps://musically.com/2014/07/15/spotify-says-its-viral-50-chart-reaches-the-parts-other-charts-dont/ | es_ES |
dc.description.references | Spotify Reveals New Viral 50 Charthttps://www.musicweek.com/news/read/spotify-launches-the-viral-50-chart/059027 | es_ES |
dc.description.references | Reports Results for Fiscal Second Quarter Ended 31 March 2020https://www.wmg.com/news/warner-music-group-corp-reports-results-fiscal-second-quarter-ended-march-31-2020-34751 | es_ES |
dc.description.references | COVID-19’s Effect on the Global Music Business, Part 1: Genrehttps://blog.chartmetric.com/covid-19-effect-on-the-global-music-business-part-1-genre/ | es_ES |
dc.description.references | Top 200https://spotifycharts.com/regional/global/weekly | es_ES |
dc.description.references | Spotify Chartshttps://spotifycharts.com/viral/ | es_ES |