- -

Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pedroche Sánchez, Francisco es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.date.accessioned 2021-09-11T03:31:08Z
dc.date.available 2021-09-11T03:31:08Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172139
dc.description.abstract [EN] Mathematical analysis of rankings is essential for a wide range of scientific, public, and industrial applications (e.g., group decision-making, organizational methods, R&D sponsorship, recommender systems, voter systems, sports competitions, grant proposals rankings, web searchers, Internet streaming-on-demand media providers, etc.). Recently, some methods for incomplete aggregate rankings (rankings in which not all the elements are ranked) with ties, based on the classic Kendall's tau coefficient, have been presented. We are interested in ordinal rankings (that is, we can order the elements to be the first, the second, etc.) allowing ties between the elements (e.g., two elements may be in the first position). We extend a previous coefficient for comparing a series of complete rankings with ties to two new coefficients for comparing a series of incomplete rankings with ties. We make use of the newest definitions of Kendall's tau extensions. We also offer a theoretical result to interpret these coefficients in terms of the type of interactions that the elements of two consecutive rankings may show (e.g., they preserve their positions, cross their positions, and they are tied in one ranking but untied in the other ranking, etc.). We give some small examples to illustrate all the newly presented parameters and coefficients. We also apply our coefficients to compare some series of Spotify charts, both Top 200 and Viral 50, showing the applicability and utility of the proposed measures. es_ES
dc.description.sponsorship This research was funded by the Spanish Government, Ministerio de Economia y Competividad, grant number MTM2016-75963-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Incomplete rankings es_ES
dc.subject Kendall's tau es_ES
dc.subject Permutation graph es_ES
dc.subject Competitive balance es_ES
dc.subject Spotify es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8101828 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Pedroche Sánchez, F.; Conejero, JA. (2020). Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists. Mathematics. 8(10):1-30. https://doi.org/10.3390/math8101828 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8101828 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\422817 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Diaconis, P., & Graham, R. L. (1977). Spearman’s Footrule as a Measure of Disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2), 262-268. doi:10.1111/j.2517-6161.1977.tb01624.x es_ES
dc.description.references Moreno-Centeno, E., & Escobedo, A. R. (2015). Axiomatic aggregation of incomplete rankings. IIE Transactions, 48(6), 475-488. doi:10.1080/0740817x.2015.1109737 es_ES
dc.description.references Criado, R., García, E., Pedroche, F., & Romance, M. (2013). A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 043114. doi:10.1063/1.4826446 es_ES
dc.description.references Fortune 500https://fortune.com/fortune500/ es_ES
dc.description.references Academic Ranking of World Universities ARWU 2020http://www.shanghairanking.com/ARWU2020.html es_ES
dc.description.references CWTS Leiden Ranking 2020https://www.leidenranking.com/ranking/2020/list es_ES
dc.description.references The Hot 100https://www.billboard.com/charts/hot-100 es_ES
dc.description.references Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., & Vee, E. (2006). Comparing Partial Rankings. SIAM Journal on Discrete Mathematics, 20(3), 628-648. doi:10.1137/05063088x es_ES
dc.description.references Cook, W. D., Kress, M., & Seiford, L. M. (1986). An axiomatic approach to distance on partial orderings. RAIRO - Operations Research, 20(2), 115-122. doi:10.1051/ro/1986200201151 es_ES
dc.description.references Yoo, Y., Escobedo, A. R., & Skolfield, J. K. (2020). A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings. European Journal of Operational Research, 285(3), 1025-1041. doi:10.1016/j.ejor.2020.02.027 es_ES
dc.description.references Pedroche, F., Criado, R., García, E., Romance, M., & Sánchez, V. E. (2015). Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks and Heterogeneous Media, 10(1), 101-125. doi:10.3934/nhm.2015.10.101 es_ES
dc.description.references Criado, R., García, E., Pedroche, F., & Romance, M. (2016). On graphs associated to sets of rankings. Journal of Computational and Applied Mathematics, 291, 497-508. doi:10.1016/j.cam.2015.03.009 es_ES
dc.description.references KENDALL, M. G. (1938). A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1-2), 81-93. doi:10.1093/biomet/30.1-2.81 es_ES
dc.description.references Kendall, M. G., & Smith, B. B. (1939). The Problem of $m$ Rankings. The Annals of Mathematical Statistics, 10(3), 275-287. doi:10.1214/aoms/1177732186 es_ES
dc.description.references Bogart, K. P. (1973). Preference structures I: Distances between transitive preference relations†. The Journal of Mathematical Sociology, 3(1), 49-67. doi:10.1080/0022250x.1973.9989823 es_ES
dc.description.references Bogart, K. P. (1975). Preference Structures. II: Distances Between Asymmetric Relations. SIAM Journal on Applied Mathematics, 29(2), 254-262. doi:10.1137/0129023 es_ES
dc.description.references Cicirello, V. (2020). Kendall tau sequence distance: Extending Kendall tau from ranks to sequences. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23), 163925. doi:10.4108/eai.13-7-2018.163925 es_ES
dc.description.references Armstrong, R. A. (2019). Should Pearson’s correlation coefficient be avoided? Ophthalmic and Physiological Optics, 39(5), 316-327. doi:10.1111/opo.12636 es_ES
dc.description.references Redman, W. (2019). An O(n) method of calculating Kendall correlations of spike trains. PLOS ONE, 14(2), e0212190. doi:10.1371/journal.pone.0212190 es_ES
dc.description.references Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics, 10(1). doi:10.1186/1471-2105-10-62 es_ES
dc.description.references Pnueli, A., Lempel, A., & Even, S. (1971). Transitive Orientation of Graphs and Identification of Permutation Graphs. Canadian Journal of Mathematics, 23(1), 160-175. doi:10.4153/cjm-1971-016-5 es_ES
dc.description.references Gervacio, S. V., Rapanut, T. A., & Ramos, P. C. F. (2013). Characterization and Construction of Permutation Graphs. Open Journal of Discrete Mathematics, 03(01), 33-38. doi:10.4236/ojdm.2013.31007 es_ES
dc.description.references Golumbic, M. C., Rotem, D., & Urrutia, J. (1983). Comparability graphs and intersection graphs. Discrete Mathematics, 43(1), 37-46. doi:10.1016/0012-365x(83)90019-5 es_ES
dc.description.references Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28. doi:10.1002/mcda.313 es_ES
dc.description.references Spotify Reports Second Quarter 2020 Earningshttps://newsroom.spotify.com/2020-07-29/spotify-reports-second-quarter-2020-earnings es_ES
dc.description.references Company infohttps://newsroom.spotify.com/company-info/ es_ES
dc.description.references Bussines Wirehttps://www.businesswire.com/news/home/20200429005216/en/ es_ES
dc.description.references Swanson, K. (2013). A Case Study on Spotify: Exploring Perceptions of the Music Streaming Service. Journal of the Music and Entertainment Industry Educators Association, 13(1), 207-230. doi:10.25101/13.10 es_ES
dc.description.references Microsoft Retires Groove Music Service, Partners with Spotifyhttps://www.theverge.com/2017/10/2/16401898/microsoft-groove-music-pass-discontinued-spotify-partner es_ES
dc.description.references Spotify Launches on PlayStation Music Todayhttps://blog.playstation.com/2015/03/30/spotify-launches-on-playstation-music-today/ es_ES
dc.description.references You Can Now Share Music from Spotify to Facebook Storieshttps://techcrunch.com/2019/08/30/you-can-now-share-music-from-spotify-to-facebook-stories es_ES
dc.description.references Mähler, R., & Vonderau, P. (2017). Studying Ad Targeting with Digital Methods: The Case of Spotify. Culture Unbound, 9(2), 212-221. doi:10.3384/cu.2000.1525.1792212 es_ES
dc.description.references Analyzing Spotify Data. Exploring the Possibilities of User Data from a Scientific and Business Perspective. (Supervised by Sandjai Bhulai). Report from Vrije Universiteit Amsterdamhttps://www.math.vu.nl/~sbhulai/papers/paper-vandenhoven.pdf es_ES
dc.description.references Greenberg, D. M., Kosinski, M., Stillwell, D. J., Monteiro, B. L., Levitin, D. J., & Rentfrow, P. J. (2016). The Song Is You. Social Psychological and Personality Science, 7(6), 597-605. doi:10.1177/1948550616641473 es_ES
dc.description.references Spotify Charts Regionalhttps://spotifycharts.com/regional es_ES
dc.description.references Spotify Charts Launch Globally, Showcase 50 Most Listened to and Most Viral Tracks Weeklyhttps://www.engadget.com/2013-05-21-spotify-charts-launch.html es_ES
dc.description.references Spotify says its Viral-50 chart reaches the parts other charts don’thttps://musically.com/2014/07/15/spotify-says-its-viral-50-chart-reaches-the-parts-other-charts-dont/ es_ES
dc.description.references Spotify Reveals New Viral 50 Charthttps://www.musicweek.com/news/read/spotify-launches-the-viral-50-chart/059027 es_ES
dc.description.references Reports Results for Fiscal Second Quarter Ended 31 March 2020https://www.wmg.com/news/warner-music-group-corp-reports-results-fiscal-second-quarter-ended-march-31-2020-34751 es_ES
dc.description.references COVID-19’s Effect on the Global Music Business, Part 1: Genrehttps://blog.chartmetric.com/covid-19-effect-on-the-global-music-business-part-1-genre/ es_ES
dc.description.references Top 200https://spotifycharts.com/regional/global/weekly es_ES
dc.description.references Spotify Chartshttps://spotifycharts.com/viral/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem