- -

Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists

Mostrar el registro completo del ítem

Pedroche Sánchez, F.; Conejero, JA. (2020). Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists. Mathematics. 8(10):1-30. https://doi.org/10.3390/math8101828

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172139

Ficheros en el ítem

Metadatos del ítem

Título: Corrected Evolutive Kendall's tau Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists
Autor: Pedroche Sánchez, Francisco Conejero, J. Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Mathematical analysis of rankings is essential for a wide range of scientific, public, and industrial applications (e.g., group decision-making, organizational methods, R&D sponsorship, recommender systems, voter ...[+]
Palabras clave: Incomplete rankings , Kendall's tau , Permutation graph , Competitive balance , Spotify
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8101828
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8101828
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
Agradecimientos:
This research was funded by the Spanish Government, Ministerio de Economia y Competividad, grant number MTM2016-75963-P.
Tipo: Artículo

References

Diaconis, P., & Graham, R. L. (1977). Spearman’s Footrule as a Measure of Disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2), 262-268. doi:10.1111/j.2517-6161.1977.tb01624.x

Moreno-Centeno, E., & Escobedo, A. R. (2015). Axiomatic aggregation of incomplete rankings. IIE Transactions, 48(6), 475-488. doi:10.1080/0740817x.2015.1109737

Criado, R., García, E., Pedroche, F., & Romance, M. (2013). A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 043114. doi:10.1063/1.4826446 [+]
Diaconis, P., & Graham, R. L. (1977). Spearman’s Footrule as a Measure of Disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2), 262-268. doi:10.1111/j.2517-6161.1977.tb01624.x

Moreno-Centeno, E., & Escobedo, A. R. (2015). Axiomatic aggregation of incomplete rankings. IIE Transactions, 48(6), 475-488. doi:10.1080/0740817x.2015.1109737

Criado, R., García, E., Pedroche, F., & Romance, M. (2013). A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 043114. doi:10.1063/1.4826446

Fortune 500https://fortune.com/fortune500/

Academic Ranking of World Universities ARWU 2020http://www.shanghairanking.com/ARWU2020.html

CWTS Leiden Ranking 2020https://www.leidenranking.com/ranking/2020/list

The Hot 100https://www.billboard.com/charts/hot-100

Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., & Vee, E. (2006). Comparing Partial Rankings. SIAM Journal on Discrete Mathematics, 20(3), 628-648. doi:10.1137/05063088x

Cook, W. D., Kress, M., & Seiford, L. M. (1986). An axiomatic approach to distance on partial orderings. RAIRO - Operations Research, 20(2), 115-122. doi:10.1051/ro/1986200201151

Yoo, Y., Escobedo, A. R., & Skolfield, J. K. (2020). A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings. European Journal of Operational Research, 285(3), 1025-1041. doi:10.1016/j.ejor.2020.02.027

Pedroche, F., Criado, R., García, E., Romance, M., & Sánchez, V. E. (2015). Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks and Heterogeneous Media, 10(1), 101-125. doi:10.3934/nhm.2015.10.101

Criado, R., García, E., Pedroche, F., & Romance, M. (2016). On graphs associated to sets of rankings. Journal of Computational and Applied Mathematics, 291, 497-508. doi:10.1016/j.cam.2015.03.009

KENDALL, M. G. (1938). A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1-2), 81-93. doi:10.1093/biomet/30.1-2.81

Kendall, M. G., & Smith, B. B. (1939). The Problem of $m$ Rankings. The Annals of Mathematical Statistics, 10(3), 275-287. doi:10.1214/aoms/1177732186

Bogart, K. P. (1973). Preference structures I: Distances between transitive preference relations†. The Journal of Mathematical Sociology, 3(1), 49-67. doi:10.1080/0022250x.1973.9989823

Bogart, K. P. (1975). Preference Structures. II: Distances Between Asymmetric Relations. SIAM Journal on Applied Mathematics, 29(2), 254-262. doi:10.1137/0129023

Cicirello, V. (2020). Kendall tau sequence distance: Extending Kendall tau from ranks to sequences. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23), 163925. doi:10.4108/eai.13-7-2018.163925

Armstrong, R. A. (2019). Should Pearson’s correlation coefficient be avoided? Ophthalmic and Physiological Optics, 39(5), 316-327. doi:10.1111/opo.12636

Redman, W. (2019). An O(n) method of calculating Kendall correlations of spike trains. PLOS ONE, 14(2), e0212190. doi:10.1371/journal.pone.0212190

Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics, 10(1). doi:10.1186/1471-2105-10-62

Pnueli, A., Lempel, A., & Even, S. (1971). Transitive Orientation of Graphs and Identification of Permutation Graphs. Canadian Journal of Mathematics, 23(1), 160-175. doi:10.4153/cjm-1971-016-5

Gervacio, S. V., Rapanut, T. A., & Ramos, P. C. F. (2013). Characterization and Construction of Permutation Graphs. Open Journal of Discrete Mathematics, 03(01), 33-38. doi:10.4236/ojdm.2013.31007

Golumbic, M. C., Rotem, D., & Urrutia, J. (1983). Comparability graphs and intersection graphs. Discrete Mathematics, 43(1), 37-46. doi:10.1016/0012-365x(83)90019-5

Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28. doi:10.1002/mcda.313

Spotify Reports Second Quarter 2020 Earningshttps://newsroom.spotify.com/2020-07-29/spotify-reports-second-quarter-2020-earnings

Company infohttps://newsroom.spotify.com/company-info/

Bussines Wirehttps://www.businesswire.com/news/home/20200429005216/en/

Swanson, K. (2013). A Case Study on Spotify: Exploring Perceptions of the Music Streaming Service. Journal of the Music and Entertainment Industry Educators Association, 13(1), 207-230. doi:10.25101/13.10

Microsoft Retires Groove Music Service, Partners with Spotifyhttps://www.theverge.com/2017/10/2/16401898/microsoft-groove-music-pass-discontinued-spotify-partner

Spotify Launches on PlayStation Music Todayhttps://blog.playstation.com/2015/03/30/spotify-launches-on-playstation-music-today/

You Can Now Share Music from Spotify to Facebook Storieshttps://techcrunch.com/2019/08/30/you-can-now-share-music-from-spotify-to-facebook-stories

Mähler, R., & Vonderau, P. (2017). Studying Ad Targeting with Digital Methods: The Case of Spotify. Culture Unbound, 9(2), 212-221. doi:10.3384/cu.2000.1525.1792212

Analyzing Spotify Data. Exploring the Possibilities of User Data from a Scientific and Business Perspective. (Supervised by Sandjai Bhulai). Report from Vrije Universiteit Amsterdamhttps://www.math.vu.nl/~sbhulai/papers/paper-vandenhoven.pdf

Greenberg, D. M., Kosinski, M., Stillwell, D. J., Monteiro, B. L., Levitin, D. J., & Rentfrow, P. J. (2016). The Song Is You. Social Psychological and Personality Science, 7(6), 597-605. doi:10.1177/1948550616641473

Spotify Charts Regionalhttps://spotifycharts.com/regional

Spotify Charts Launch Globally, Showcase 50 Most Listened to and Most Viral Tracks Weeklyhttps://www.engadget.com/2013-05-21-spotify-charts-launch.html

Spotify says its Viral-50 chart reaches the parts other charts don’thttps://musically.com/2014/07/15/spotify-says-its-viral-50-chart-reaches-the-parts-other-charts-dont/

Spotify Reveals New Viral 50 Charthttps://www.musicweek.com/news/read/spotify-launches-the-viral-50-chart/059027

Reports Results for Fiscal Second Quarter Ended 31 March 2020https://www.wmg.com/news/warner-music-group-corp-reports-results-fiscal-second-quarter-ended-march-31-2020-34751

COVID-19’s Effect on the Global Music Business, Part 1: Genrehttps://blog.chartmetric.com/covid-19-effect-on-the-global-music-business-part-1-genre/

Top 200https://spotifycharts.com/regional/global/weekly

Spotify Chartshttps://spotifycharts.com/viral/

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem